Skip to main content
Log in

Lung overinflation without positive end-expiratory pressure promotes bacteremia after experimental Klebsiella pneumoniae inoculation

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective: To determine the effect of peak inspiratory pressure (PIP) and positive end-expiratory pressure (PEEP) on the development of bacteremia with Klebsiella pneumoniae after mechanical ventilation of intratracheally inoculated rats.

Design: Prospective, randomized, animal study.

Setting: Experimental intensive care unit of a University.

Subjects: Eighty male Sprague Daw-ley rats.

Interventions: Intratracheal inoculation with 100 µl of saline containing 3.5−5.0×105 colony forming units (CFUs) K. pneumoniae/ml. Pressure-controlled ventilation (frequency 30 bpm; I/E ratio=1:2; FIO2=1.0) for 180 min at the following settings (PIP/PEEP in cmH2O): 13/3 (n=16); 13/0 (n=16); 30/10 (n=16) and 30/0 (n=16), starting 22 h after inoculation. Arterial blood samples were obtained and cultured before and 180 min after mechanical ventilation and immediately before sacrifice in two groups of non-ventilated control animals (n=8 per group). After sacrifice, the lungs were homogenized to determine the number of CFUs K. pneumoniae.

Measurements and results: The number of CFUs recovered from the lungs was comparable in all experimental groups. After 180 min, 11 animals had positive blood cultures for K. pneumoniae in group 30/0, whereas only 2,0 and 2 animals were positive in 13/3,13/0 and 30/10, respectively (p<0.05 group 30/0 versus all other groups).

Conclusions: These data show that 3 h of mechanical ventilation with a PIP of 30 cmH2O without PEEP in rats promotes bacteremia with K. pneumoniae. The use of 10 cmH2O PEEP at such PIP reduces ventilation-induced K. pneumoniae bacteremia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Montgomery AB, Stager MA, Carrico CJ, Hudson LD (1985) Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 132: 485–489

    PubMed  CAS  Google Scholar 

  2. Swank GM, Deitch EA (1996) Role of the gut in multiple organ failure: Bacterial translocation and permeability changes. World J Surg 20: 411–417

    Article  PubMed  CAS  Google Scholar 

  3. Schlag G, Redl H (1996) Mediators of injury and inflammation. World J Surg 20: 406–410

    Article  PubMed  CAS  Google Scholar 

  4. Tremblay L, Valenza F, Ribeiro SP, Jingfang L, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99: 944–952

    Article  PubMed  CAS  Google Scholar 

  5. Von Bethmann AN, Brasch F, Müller K, Wendel A, Uhlig S (1996) Prolonged hyperventilation is required for release of tumor necrosis factor a but not IL-6. Appl Cardiopulm Pathophysiol 6: 171–177

    Google Scholar 

  6. Van ’t Veen A, Mouton JW, Gommers D, Lachmann B (1996) Pulmonary surfactant as vehicle for intratracheally instilled tobramycin in mice infected with Klebsiella pneumoniae. Br J Pharmacol 119:1145–1148

    Google Scholar 

  7. Roosendaal R, Bakker IAJM, Van den Berghe-van Raffe M, Michel MF (1986) Continuous versus intermittent administration of ceftazidime in experimental Klebsiella pneumoniae pneumonia in normal and leukopenic rats. Antimicrob Agents Chemother 30: 403–408

    PubMed  CAS  Google Scholar 

  8. Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110: 556–565

    PubMed  CAS  Google Scholar 

  9. Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884

    PubMed  CAS  Google Scholar 

  10. Dreyfuss D, Soler P, Basset G, Saumon G (1988) Intermittent positive pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164

    PubMed  CAS  Google Scholar 

  11. LaForce FM, Mullane JF, Boehme RF, Kelly WJ, Huber GL (1973) The effect of pulmonary edema on antibacterial defenses of the lung. J Lab Clin Med 82: 634–648

    PubMed  CAS  Google Scholar 

  12. Brough-Holub E, Toews GB, van Iwaarden F, Strieter RM, Kunkel SL, Paine R III, Standiford TJ (1997) Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella Pneumonia: Elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival. Infect Immun 65:1139–1146

    Google Scholar 

  13. Lachmann B, Eijking EP, So KL, Gommers D (1994) In vivo evaluation of the inhibitory capacity of human plasma on exogenous surfactant function. Intensive Care Med 20: 6–11

    Article  PubMed  CAS  Google Scholar 

  14. Van ’t Veen, Gommers D, Lachmann B (1997) Rationale for surfactant therapy in pneumonia. In: Vincent JL (ed) Year book of Intensive Care and Emergency Medicine. Springer, Berlin Heidelberg, pp 638–653

    Google Scholar 

  15. Huber JL, Johanson WG, La Force FM (1977) Experimental models and pulmonary antimicrobial defenses. In: Brian JD, Proctor DF, Reid L (eds) Respiratory defense mechanisms. Dekker, New York, pp 983–1022

    Google Scholar 

  16. Gøthgen IH, Berthelsen PG, Rasmussen JP, Jacobsen E (1993) Ventilation in ARDS and asthma: the optimal blood gas values. Scand J Clin Lab Invest Suppl 214: 67–73

    Article  PubMed  Google Scholar 

  17. Seidenfeld JJ, Mullins RC, Fowler SR, Johanson WG (1986) Bacterial infection and acute lung injury in hamsters. Am Rev Respir Dis 134: 22–26

    PubMed  CAS  Google Scholar 

  18. Tilson MD, Bunke MC, Walker Smith GJ, Katz J, Cronau L, Barash PG, Baue AE (1977) Quantitative bacteriology and pathology of the lung in experimental Pseudomonas pneumonia treated with positive end-expiratory pressure (PEEP). Surgery 82:133–140

    PubMed  CAS  Google Scholar 

  19. Johanson WG, Higuchi JH, Woods DE, Gomez P, Coalson JJ (1985) Dissemination of Pseudomonas aeruginosa during lung infection in hamsters. Role of oxygen-induced lung injury. Am Rev Respir Dis 132: 358–361

    PubMed  Google Scholar 

  20. Tremblay LN, Slutsky AS (1996) The role of pressure and volume in ventilator induced lung injury. Appl Cardiopulm Pathophysiol 6:179–190

    Google Scholar 

  21. Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148: 1194–1203

    PubMed  CAS  Google Scholar 

  22. Taskar V, John J, Evander E, Roberston B, Jonson B (1997) Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am J respir Crit Care Med 155: 313–320

    PubMed  CAS  Google Scholar 

  23. Brigham KL (1982) Mechanisms of lung injury. Clin Chest Med 3: 9–24

    PubMed  CAS  Google Scholar 

  24. Tyler DC (1983) Positive end-expiratory pressure: A review. Crit Care Med 11: 300–308

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the International Foundation for Clinically Oriented Research (IFCOR).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbrugge, S.J.C., Šorm, V., van ’t Veen, A. et al. Lung overinflation without positive end-expiratory pressure promotes bacteremia after experimental Klebsiella pneumoniae inoculation. Intensive Care Med 24, 172–177 (1998). https://doi.org/10.1007/s001340050541

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001340050541

Key words

Navigation