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E-cad
 

 

a-SM
A

 

V
im

en
tin

 

 B
P

D
 

D
en

g C
 et al(1

) 

Murine model of 
hyperoxia- 
induced BPD, 
GFP-tagged bone 
marrow (BM) 
chimera mice 

60% oxygen 
for 14 days, 
CXCL12 
chemotaxis 
assay 

 
 
 

N 

 
 
 

Y 

 
 
 

N 

S100A4, TTF-1, Pro- 
Surfactant Protein- 
B, Collagen I, CXCR4 

GFP-tagged BM-derived fibroblasts were 
engrafting the lung in active fibrotic areas; 
there were significantly more BM-derived 
CXCR4+ fibroblasts in the lungs of O2 treated 
animals than in controls; BM-derived TTF-1+ 
epithelial cells were detected in injured lungs 

 

A
sth

m
a

 

H
eijin

k I 

et al (2
) 

Bronchial 
epithelial cell line, 
Primary bronchial 
epithelium 
(hBEC), in vitro 

TGF- 1, 
House dust 
mite (HDM) 
allergen 

 

 
y 

 

 
N 

 

 
Y 

EGFR, -catenin 
activation, 
cytokeratin (KRT), 
Myosin light chain 
phosphorilation 

HDM allergen acted synergically with TGF- 1 
in inducing EMT in primary hBECs. 

 H
ackett T-L 

et al (3
) 

hBEC from 
patients with 
asthma (8) and 
healthy controls 
(10) 

TGF-  

SMAD3 
siRNA, BMP- 
7 

 

 
Y 

 

 
N 

 

 
Y 

Fibronectin (FN), 
collagen-1, 
occludin-1 

In vitro evidence for EMT in HBEC; basal 
epithelial cells are especially sensitive to EMT 
as in vitro data suggest; no histological 
evidence for EMT in sections from matched 
asthmatic patients 

 H
ackett T-L et al (4

) 

hBEC cell lines 
16HBE and BEAS- 
2B; primary hBEC 
from healthy 
controls and from 
patients with 
asthma 

HDM 
allergen; 
epidermal 
growth 
factor (EGF) 

 

 
 
 
 
 

Y 

 

 
 
 
 
 

N 

 

 
 
 
 
 

N 

Caveolin-1 (Cav-1), 

-catenin, Thymic 
Stromal 
Lymphopoietin 
(TSLP), 

Cav-1 levels, junctional E-cadherin and - 
catenin were significantly lower, TSLP levels 
were higher in asthma patients compared to 
controls; EGF and HDM treatment induced E- 
cad redistribution and Cav-1 internalization in 
16HBE cells. Cav-1-specific siRNA inhibited E- 
cad internalisation and barrier dysfunction in 
16HBE cells; Cav-1 overexpression restored 
barrier dysfunction and reduced TSLP levels in 
BEAS-2B cells. 

 Jo
h

n
so

n
 JI 

et al (5
) 

HDM-induced 
asthma in ROSA- 
26/SPC-Cre-LacZ 
reporter mice 

HDM for 15 
weeks 

 

 
Y 

 

 
Y 

 

 
Y 

TGF-β1, occludin, 
pro-collagen I, 
SNAIL 

LacZ+/α-SMA+ cells were incorporated into 
airway smooth muscle; LacZ+/Vim+ cells were 
present in the sub-epithelium; 30% of Vim+ 
cell were also LacZ+ 

 B
O
S

 

H
o

d
ge et al.(6

) 

Bronchial 
brushings from 
lung transplant 
(LTx)patients with 
(6) or without 
BOS (16) 

N/A  
 
 

N 

 
 
 

Y 

 
 
 

N 

Flow cytometry, 
S100A4 FN, HLA- 
DR; TGF-β1 and 
HGF levels in BALF- 
ELISA 

EMT markers α-SMA, S100A4 FN and HLA-DR 
were increased in epithelial cells from BOS 
patients compared to stable LTx patients; 

Increased levels of HGF but not TGF- 1 in the 
BALF of BOS patients. 

 B
O
S

 

W
ard

 et al 

Endobronchial 
biopsy and 
brushings from 16 
stable Ltx 
patients 

TGF- 1 
 

 
 
 
 
 

N 

 

 
 
 
 
 

N 

 

 
 
 
 
 

N 

S100A4 IHC, MMP- 
2, 7 and 9 
zymography, 
invasion assay 

A median 15% of the biopsy epithelium 
stained for S100A4 and MMP-7 in stable lung 
transplant recipients; Epithelial cultures from 
lung allografts were positive for S100A4 and 
MMP-2 and 9 showed zymographic activity. 
MMP total protein and activity was increased 

after TGF-β1 treatment; Both TGF- 1 
stimulated and non-stimulated epithelial cells 
were invasive, invasion capacity was higher in 
TGF-β1 stimulated cells. 

 

B
O

S 

B
o

rth
w

ick et al.(7
) 

In vitro culturing 
of hBEC form 
obtained via 
bronchial 
brushing from 
stable LTx 
patients, co- 
culture with THP- 

TGF β1 with 
or without 
P.aeruginosa 
cell lysate 
(lab. strain 
and clinical 
isolates (9)) 

 

 
 
 
 

Y 

 

 
 
 
 

N 

 

 
 
 
 

Y 

IL-8, IL-1β, TNF-α, 
FN, KRT-19 

Supernatants, but not co-cultures of THP-1 
cells treated with P.aeruginosa accentuated 
EMT on cultured hBECs. Clinical isolates of 
P.aeruginosa induced significantly higher 
production of inflammatory cytokines in THP- 
1s than the reference strain. 



  

B
O

S 

B
o

rth
w

ick 

et al.(8
) 

In vitro culturing 
of hBEC form 
obtained via 
bronchial 
brushing from 
stable LTx 
patients 

TGF- , TNF- 
α 

 

 
 
 

Y 

 

 
 
 

Y 

 

 
 
 

Y 

FN, KRT-19, 
S100A4, MMP-9 
zymography, 
Matrigel invasion 
assay, collagen 
synthesis 

Bronchial epithelium upregulating EMT and 
downregulating epithelial markers in BOS but 
not in stable transplants; epithelial cells; TNF- 

-     –induced EMT and cell 
migration, but not ECM deposition. 

 

B
O

S 

M
ilara et al (9

) 

In vitro culture of 
hBECs isolated 
from small 
airways (>1mm) 
of non-smokers 
(5), smokers (12) 
and COPD 
patients (15); IHC 
of tissue samples 

Cigarette 
Smoke 
Extract (CSE) 

 
 
 
 
 

Y 

 
 
 
 
 

Y 

 
 
 
 
 

Y 

collagen type I, 
NOX4, ZO-1 (IHC); 
TGF-β1, cAMP and 
MMP-9 (ELISA) 
ERK1/2 and Smad3 
phosphorylation 
(WB) 

hBECs from smokers and COPD patients but 
not from controls show EMT; CSE-induced 
EMT is mediated by the ROS and 
downregulation of cAMP; 

 

B
O
S

 

Zo
u

 et al 

HBEC cell line Nicotine, 
Wnt-3a, 

TGF- 1 
siRNA 

 
 
 

Y 

 
 
 

Y 

 
 
 

Y 

MMP-9, Collagen-I Nicotine treatment leads β-catenin to nuclear 

translocation, E-cad downregulation, SMA, 

Vim, Col-1, MMP-9 and TGF- 1 upregulation 

in HBECs; Knockdown of Wnt3a and TGF- 1 
using specific siRNA constructs prevented 
these effects.. 
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V
im
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C
O

P
D

 

So
h

al et al (1
0

, 1
1

) 

Endobronchial 
biopsies from 
non-smokers(15); 
ex-smokers with 
COPD(15), 
smokers with 
normal lung 
function(16) and 
current smokers 
(17) 

N/A  
 
 
 

 
N 

 
 
 
 

 
N 

 
 
 
 

 
Y 

IHC for S100A4, 
MMP-9, KRT and 
EGFR 

Evidence for Rbm fragmentation / 
remodelling, increased EGFR expression of 
epithelial cells in COPD patients and smokers 
compared to non-smoker control(11), 7.2% of 
basal epithelial cells and cells in the Rbm 
frequently co-express KRT and S100A4 
suggesting EMT in vivo(10). 

 

C
O

P
D

 

W
an

g et al 

Lung tissue 
samples obtained 
during lobectomy 
from 25 non- 
smokers, 25 
smokers with and 
18 smokers 
without COPD; 
Human primary 
small airway 
epithelial cells 
(SAEC) 

CSE extract, 
uPAR-1 and 
2-specific 
siRNA 
constructs; 

 

 
 
 
 
 
 

Y 

 

 
 
 
 
 
 

Y 

 

 
 
 
 
 
 

Y 

uPAR, -catenin, N- 
cadherin, p-Akt, p- 

GSK-3

Increased expression of EMT markers and 
uPAR small airway epithelium (SAE) of 
patients with COPD compared to controls; 
Vimentin and uPAR expression are correlated 
in SAE; CSE-induced EMT in SAEC was 
associated with high uPAR expression; 
Targeted silencing of uPAR inhibited CSE- 
induced EMT; uPAR mediates EMT in SAEC 
through the PI3K/Akt signaling pathway. 

 

C
O

P
D

 

C
h

u
rg et al. 

C57Bl/6 mice 
were exposed to 
cigarette smoke 
for up to 6 
months 

Smoke of 
2R1 
Kentucky 
research 
cigarettes in 
various 
doses 

 
 
 
 

 
N 

 
 
 
 

 
N 

 
 
 
 

 
N 

Procollagen, TGF- 

1, platelet- 
derived growth 
factor (PDGF)-A, 
PDGF-B, 
connective tissue 
growth factor 
(CTGF), p-SMAD2 

With a single smoke exposure, increases in 
procollagen, CTGF, TGF-β1, PDGF-A and -B 
expression were seen after 2 h of smoke 
exposure; With chronic smoke exposures 
increases in procollagen, CTGF, PDGF-B 
expression persisted through 1 wk, 1 mo, and 
6 mo; Increased p-Smad2 was present at all 
time points, indicating constitutively active 
TGF-β signalling; Small airways in smoke- 
exposed mice had more collagen at 6 mo. 

 

C
O

P
D

 

M
ilara et al. 

Air-liquid 
interface (ALI) 
cultures were set 
up from HBECs 
from non- 
smokers (n=5), 
smokers (n=12) 
and patients with 
COPD (n=15) 

CSE 
exposure 

 

 
 
 
 

Y 

 

 
 
 
 

Y 

 

 
 
 
 

Y 

collagen-I, NOX4, 
ZO-1, MMP-9 

EMT markers were upregulated and epithelial 
markers were downregulated in HBECs of 
smokers and patients with COPD compared 
with non-smokers; CSE exposure caused EMT 
within 72 h in in vitro differentiated HBECs; 
CSE effects were mediated by intracellular 
reactive O2 species, autocrine action of TGF- 
β1, activation of ERK1/2 and Smad3 and by 
the downregulation of cAMP 

 

IP
F 

K
im

 et al (1
2

) 

ROSA-26/SPC- 
Cre-LacZ reporter 
mice, in vitro 
culture of 
transgenic ATIIs 

Intranasal 
Adeno-TGF- 
β1, culturing 
ATIIs on 
Matrigel or 
FN, TGFR 
kinase 
inhibitor 
SB431542 

 
 
 
 
 

N 

 
 
 
 
 

Y 

 
 
 
 
 

N 

Pro-SP-C, FN, N- 
cad, p-SMAD2, 
TUNEL 

Lung injury induced by TGF-β1 expressing 
adenoviri causes massive EMT AECs; genetic 
fate tracking proves epithelial origin of 
myofibroblasts. Culturing genetically tagged 
AECs on FN but not on Matrigel induces EMT 
by activating intracellular TGF- 
signalling through αvβ6 integrin. 



  

IP
F 

Tan
jo

re et al 

(1
3

) 

ROSA-26/SPC- 
Cre-LacZ reporter 
mice, in vitro 
culture of 
transgenic ATIIs 

IT bleomycin 
(single 0.08U 
dose 

 
 
 

N 

 
 
 

Y 

 
 
 

N 

S100A4, pro–SP-C Approximately one-third of S100A4+ 
fibroblasts are derived from tagged epithelial 
cells; α-SMA+ myofibroblasts are a distinct 
population from EMT-derived S100A4+ 
Fibroblasts; some S100A4+ Fibroblasts derive 
from bone marrow 

 

IP
F 

D
eagryse et al. (1

4
) 

ROSA-26/SPC- 
Cre-LacZ reporter 
mice 

IT bleomycin 
(0.04U given 
biweekly 8 
times) 

 
 
 

 
N 

 
 
 

 
Y 

 
 
 

 
N 

pro-SP-C, Clara cell 
10 (CC-10), β- 
galactosidase, 
S100A4, TUNEL 

Repetitive bleomycin dosing results in greater 
lung fibrosis, less neutrophilic inflammation, 
greater cell death, and more prominent EMT 
compared with the single-dose model; one- 
half of the S100A4+ fibroblasts were of 
epithelial lineage. The authors suggest this 
recapitulates better the features of IPF than 
the single-dose bleomycin model. 

 

IP
F 

H
arad

a et al (1
5

) 

13 patients with 
UIP histology; 11 
IPF, 2 
autoimmune; 10 
control patients 
w/ normal lung 
function 

N/A  

 
 
 

N 

 

 
 
 

Y 

 

 
 
 

Y 

Pro-SP-B, TTF-1, 
KRT7/8 (CAM5.2) 

-SMA were detectable in 
some epithelial cells covering the fibroblastic 
foci in UIP but not in healthy control lungs. 
Spindle-shaped cells positive for TTF-1, ProSP- 
B, and KRT7/8 were detectable in the 
fibroblastic foci of UIP lungs. 

 

IP
F 

R
o

ck et al (1
6

) 

ROSA-26 / 
Sftpctm1-Cre- 
Tomato 
transgenic 
reporter mice 

IT bleomycin 
(1.25 U/kg − 
5 U/kg body 
weight dose) 
in a single 
injection 

 
 
 

N 

 
 
 

Y 

 
 
 

Y 

SP-C; AQP-5; 
S100A4; NG2; 
Desmin; CC-10; 
PECAM 

Proliferating fibroblasts were derived from 
NG2+ and/or PDGFRB+ stromal populations 
but not from SP-C+ or CC-10+ epithelial cells 
using genetically tagged murine models. 



  D
ise

a
se

 

R
e

fe
re

n
ce

 

Model Methods/ 
Treatment 

Markers Other markers Main results 

E-cad
 

a-SM
A

 

V
im
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 Lu
n

g C
a

n
ce

r 

P
ru

d
kin

 et al (1
7

) 

Tissue from 
human lung 
cancers: 
squamous 
metaplasia (13), 
squamous 
dysplasia (34) & 
carcinoma in situ 
(20), Brain 
metastases: 
adenocarcinoma 
(37), squamous 
cell (11). 

N/A  
 
 
 
 
 

 
Y 

 
 
 
 
 
 

 
N 

 
 
 
 
 
 

 
Y 

N-Cadherin, 
Integrin αvβ6, 
MMP-9, and 
phosphorylated 
EGFR. 
Methods: Tissue 
microarray 
construction, IHC, 
EGFR mutation 
analysis. 

EMT phenotype was commonly expressed in 
dysplastic lesions, lung squamous cell 
carcinoma and adenocarcinoma. Brain 
metastases from these tumours expressed 
higher levels of E-cadherin than primary 
tumours implicating the occurrence of MET 
after dissemination. 

 

Lu
n

g C
an

cer 

P
iro

zzi et al (1
8

) 

A549s (control) 
and LC31 (lung 
cancer primary 
cell line). LC31 
cells grown as 
pneumospheres 
were 
subcutaneously 
injected in 
NOD/SCID mice. 

TGF-β1 
2ng/ml: 
A549s for 30 
days, LC31s 
for 80 days 

 

 
 
 
 
 

Y 

 

 
 
 
 
 

N 

 

 
 
 
 
 

Y 

KRT, N-cad, CD90, 
SLUG, TWIST, β- 
catenin. 
Stem markers: 
Oct4, Nanog, Sox2, 
c-kit, CD133. 

TGF-β1 lung cancer cells underwent EMT 
showing mesenchymal phenotype and LC31s 
also showed over-expression of stemness 
markers. TGF-β1treatmentincreased the 
pneumoshere-forming capacity and 
invasiveness of LC31s in NOD/SCID mice. 

 R
en

 et al (1
9

) 

Cell lines: 
Doxetacel (DTX) 
sensitive and 
resistant human 
NSCLC line SPC- 
A1. Animal 
model: SPC- 
A1/DTX cells 
injected into 
nude mice. 

ZEB1 siRNA 
knockdown. 
DTX 
treatment. 

 
 
 
 

 
Y 

 
 
 
 

 
N 

 
 
 
 

 
Y 

N-cad, KRT-19, 
TWIST. 
Methods: apoptosis 
assay, colony 
formation assay, 
wound healing 
assay, 
migration/invasion 
assays. 

Acquisition of DTX resistance coincides with 
EMT/mesenchymal phenotype, an increased 
migratory and invasive capacity, increased 
ZEB1 expression. ZEB1 knockdown was found 
to reverse the EMT phenotype and inhibit the 
migratory ability of SPC-A1/DTXs, enhanced 
the chemo-sensitivity. 

 To
m

in
aga et al 

(2
0

) 

Human NSCLC 
lines: A549, PC-9, 
RERF-LC-KJ, and 
LC-2/ad 

Cell lines 
were 
transfected 
to over- 
express miR- 
1. 

 
 
 

Y 

 
 
 

N 

 
 
 

Y 

Vinculin, occludin, 
SNAIL, SLUG, ZEB1 

miR-1 expression was down-regulated in lung 
cancer cell lines. Overexpression of miR-1 
endowed A549 cells with epithelial features 
upregulated E-cad by inhibiting SLUG. miR-1 
suppressed the migratory & invasive capacity 
of A549s. 

 W
itta et al (2

1
) 

21 NSCLC cell 
lines were used: 
squamous (4), 
large cell (5), 
adeno-carcinoma 
(10), & bronchio- 
alveolar (2). 

Gefitinib, 
HDAC 
inhibitor 
(MS-275). 
E-cad 
transfection. 

 
 
 

 
Y 

 
 
 

 
N 

 
 
 

 
N 

EGFR, ZEB1 Gefetinib sensitivity correlated with E-cadand 
ZEB1 expression. E-cad overexpression 
restored gefetinib sensitivity. HDAC inhibitor 
(MS-275) treatment induced E-cadherin & 
EGFR, and led to a growth-inhibitory & 
apoptotic effect with gefitinib treatment, 
even in resistant cell lines harbouring EGFR 
mutations. 
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