WEB-ONLY DATA SUPPLEMENT

Oxygen uptake kinetics during continuous exercise

In addition to the continuous exercise (CE) and intermittent exercise (IE) bouts, seven subjects performed 1 or 2 additional constant-load transitions to 70% of peak power. The protocol for these additional exercise bouts involved 3 min of unloaded cycling followed by an abrupt application of the predetermined workload for 7 min . The breath-by-breath oxygen uptake $\left(\dot{\mathrm{V}}_{\mathrm{O}_{2}}\right)$ data from each trial (including the first 7 min of the CE bout) were inspected for aberrant breaths. Values exceeding 3 standard deviations from the local mean were removed. The $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ data from the repeated trials were then interpolated to 1 second values, time aligned and averaged, effectively smoothing the data and enhancing the underlying kinetic response. A fourcompartment model with three exponential terms was used to describe the time course of the $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ response (Equation 1):
$\left.\dot{\mathrm{V}}_{\mathrm{O}_{2}}(\mathrm{t})=\mathrm{A}_{\mathrm{B}}+\mathrm{A}_{\mathrm{C}}\left(1-\mathrm{e}^{-\left(\mathrm{t}-\mathrm{TD} \mathrm{D}_{\mathrm{C}}\right) / \tau_{\mathrm{C}}}\right)+\mathrm{A}_{\mathrm{P}}\left(1-\mathrm{e}^{-(\mathrm{t}-\mathrm{TD} \mathrm{D}) / \tau_{\mathrm{P}}}\right)+\mathrm{A}_{\mathrm{S}}\left(1-\mathrm{e}^{-(\mathrm{t}-\mathrm{TD}} \mathrm{S}\right) / \tau_{\mathrm{S}}\right)$,
where $\dot{\mathrm{V}}_{\mathrm{O}_{2}}(\mathrm{t})$ is the $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ at time t ; A_{B} is the baseline $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ during unloaded cycling, while A_{C}, A_{p} and A_{S} represent the cardio-dynamic (phase I), primary (phase II) and slow component amplitudes, respectively; $\mathrm{TD}_{\mathrm{C}}, \mathrm{TD}_{\mathrm{P}}$ and TD_{S}, and $\tau_{\mathrm{C}}, \tau_{\mathrm{P}}$ and τ_{S} are the time delays and time constants of phase I and the primary and slow components, respectively.

If the amplitude of the slow component $\left(\mathrm{A}_{\mathrm{s}}\right)$ was not significantly different from 0 , the model was reduced to three compartments with exponential terms describing phase I and phase II (Equation 2):

$$
\dot{\mathrm{V}}_{\mathrm{O}_{2}}(\mathrm{t})=\mathrm{A}_{\mathrm{B}}+\mathrm{A}_{\mathrm{C}}\left(1-\mathrm{e}^{-\left(\mathrm{t}-\mathrm{TD}_{\mathrm{C}}\right) / \tau_{\mathrm{C}}}\right)+\mathrm{A}_{\mathrm{S}}\left(1-\mathrm{e}^{-\left(\mathrm{t}-\mathrm{TD}_{\mathrm{S}}\right) / \tau_{\mathrm{S}}}\right)
$$

Figure 1 shows an example of the $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ response and model fit in a representative subject with chronic obstructive pulmonary disease (COPD) and Table 1 provides the individual and group mean values for selected model parameters.

Figure 1. $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ response to constant-load exercise in a representative subject. Data points represent mean second-by-second values for 2 transitions to 70% of peak power. The solid line indicates the model fit, with the residuals shown at the bottom. The predetermined workload was applied at 60 s . The $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ values from 0 to 60 s are for unloaded cycling.

Table 1: Oxygen uptake kinetics in the transition to constant-load exercise performed at 70% of peak power in patients with moderate COPD.

Subjects	A_{B} ($\mathrm{ml} / \mathrm{min}$)	A_{C} ($\mathrm{ml} / \mathrm{min}$)	A_{P} ($\mathrm{ml} / \mathrm{min}$)	A_{s} (ml/min)	τ_{P} (s)	TD_{P} (s)	TD_{s} (s)
1	555	24	310	59	86	9	217
2	580	53	324	55	64	25	224
3	477	19	146	--	97	32	--
4	646	115	361	24	85	27	141
5	551	47	352	26	74	26	229
6	714	127	581	--	115	22	--
7	747	158	663	80	55	8	174
Mean (SE)	610 (37)	78 (21)	391 (66)	49 (11)	82 (8)	21 (3)	197 (17)

A_{B} : baseline oxygen uptake amplitude; A_{C} : phase I amplitude; A_{P} : phase II amplitude; A_{s} : slow component amplitude; τ_{P} : phase II time constant; TD_{p} : phase II onset time; TD_{s} : slow component onset time.

The effect of $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ kinetics on the intermittent exercise response

To determine if the lower $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ response observed during IE compared to CE was primarily the result of the exponential shape of the on-kinetic response, we used a similar methodology to that recently described by Morris and colleagues. ${ }^{1}$ Briefly, we calculated the $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ amplitude at 60 s of CE and compared this value with the measured IE response (Table 2). The $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ amplitude for IE was determined as the average $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ measured during the final 10 s of each 60-s exercise interval over the duration of the entire IE bout. The predicted $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ value was calculated using a single exponential term, omitting the Phase I response (Equation 3):

$$
\left.\dot{\mathrm{V}}_{\mathrm{O}_{2}}(\mathrm{t})=\mathrm{A}_{\mathrm{B}}+\mathrm{A}_{\mathrm{P}}\left(1-\mathrm{e}^{-(\mathrm{t}-\mathrm{T}} \mathrm{P}\right) / \tau_{\mathrm{P}}\right)
$$

The $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ amplitude at 60 s was also re-calculated using a time constant (τ_{P}) value of 42 s . This value is the mean phase II τ for healthy older individuals performing constant-load cycling at $\sim 70 \%$ of peak power. ${ }^{2}$

Table 2. Measured and predicted oxygen uptake values for intermittent exercise.

Subjects	$\begin{aligned} & \text { Measured } \dot{\mathrm{V}}_{\mathrm{O}_{2}} \\ & (1 / \mathrm{min}) \end{aligned}$	$\begin{aligned} & \text { Predicted } \dot{\mathrm{V}}_{\mathrm{O}_{2}} \\ & (1 / \mathrm{min}) \end{aligned}$	$\begin{aligned} & \text { Predicted } \dot{\mathrm{V}}_{\mathrm{O}_{2}} \\ & (1 / \mathrm{min}) \end{aligned}$
		τ_{P} from Table 1	$\tau_{\mathrm{P}}=42 \mathrm{~s}$
1	0.76	0.72	0.81
2	0.78	0.79	0.87
3	0.88	0.89	1.01
4	0.77	0.75	0.85
5	1.05	1.29	1.37
6	0.97	1.00	1.25
7	0.50	0.54	0.60
Mean (SE)	0.82 (0.07)	0.85 (0.09)	0.97 (0.10)*

$\dot{\mathrm{V}}_{\mathrm{O}_{2}}$: oxygen uptake; τ_{p} : phase II time constant. The measured $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ values represent the mean end-exercise interval values obtained over the entire intermittent exercise test duration. The predicted $\dot{\mathrm{V}}_{\mathrm{O}_{2}}$ values were calculated using a single-term (Equation 3) exponential model (see text for details). * $\mathrm{P}<0.05$, significantly different from measured $\mathrm{V}_{\mathrm{O}_{2}}$ value (repeated measures ANOVA).

REFERENCES

1 Morris N, Gass G, Thompson M, et al. Physiological responses to intermittent and continuous exercise at the same relative intensity in older men. Eur J Appl Physiol 2003;90:620-625.

2 Sabapathy S, Schneider DA, Comadira G, et al. Oxygen uptake kinetics during severe exercise: a comparison between young and older men. Respir Physiol Neurobiol 2004;139:203-213.

