CORRESPONDENCE

Author's response: Airway anatomy in COPD: many dimensions to consider

We thank Bokov and Delclaux for their thoughtful comments¹ on our paper² and offer the following comments.

The homothety factor, as defined by Bokov and Delclaux, describes a structural aspect of the airway tree not directly addressed in our study, which we agree is important and likely also influences airflow in asthma and COPD. However, we believe the suggestion that the two factors, tracheal area and homothety factor, alone characterise the whole bronchial tree omits important structural characteristics, such as airway lengths and branch angles, which also influence airflow.³ ⁴ We have been quite interested in the role played by airway geometry in assessing diseasespecific airflow patterns and distribution patterns of inhaled particles.5

Bokov and Delclaux hypothesise that narrowing and removal of the smallest airways in COPD leave larger airways to be detected by CT. We agree that this is a logical conclusion of our results; however, it does not bias our results as stated, because we compared airways at matched hierarchical locations.2 Indeed, our findings support the recommendation that comparative studies of airway morphology by disease state using CT or any other technique, should ensure similar hierarchical locations of sampled airways between groups to avoid bias introduced from the hierarchical gradient of airway properties in the tracheobronchial tree.6

We agree that airway dimensions are important in diseases other than COPD and, similar to the writers, have found

markedly smaller airway lumen diameters in patients with asthma-including adults with a history of remitted childhood asthma.

Most certainly, as Bokov and Delclaux emphasise, airway structure, both inherent and acquired, plays a critical role in regard to regional lung function and environmental impact on the lung. With the detailed anatomy available from advances in imaging technologies, a wealth of new data is available for exploration.

Beniamin M Smith, 1,2 Eric A Hoffman, 3 R Graham Barr^{1,4}

¹Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York,

²Department of Medicine, McGill University, Montreal,

³Departments of Radiology, Medicine and Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA ⁴Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA

Correspondence to: Dr Beniamin M Smith. Presbyterian Hospital 9E Room 109, Columbia University Medical Center, 630 West 168th St. New York, NY 10032, USA; benjamin.m.smith@mcgill.ca

Contributors BMS contributed to the discussion, formulation, drafting and revising of this correspondence, and is responsible for the overall content as guarantor. EAH contributed to the discussion, formulation and revising of this letter, RGB contributed to the discussion, formulation and revising of this letter.

Funding Funding Institutions: U.S. Department of Health and Human Services-National Institutes of Health. Grant Number: HHSN2682009000019C and HHSN268200900020C: HHSN268200900013C. HHSN268200900014C; HHSN268200900015C, HSN268200900016C; HHSN268200900017C, HHSN268200900018C; N01-HC95159-HC95169; R01-HL093081, R01-HL077612, R01-HL075476. Fonds de Recherche du Québec—Santé.

Competing nterests: EAH is a founder and shareholder of VIDA Diagnostics, a company that is commercialising pulmonary image analysis software developed, in part, at the University of Iowa.

Provenance and peer review Not commissioned; internally peer reviewed.

To cite Smith BM, Hoffman EA, Barr R G, Thorax 2015:70:585

Received 21 November 2014 Accepted 24 November 2014 Published Online First 8 January 2015

- ► http://dx.doi.org/10.1136/thoraxinl-2014-205160
- http://dx.doi.org/10.1136/thoraxjnl-2014-206534

Thorax 2015;70:585. doi:10.1136/thoraxinl-2014-206606

REFERENCES

- Bokov P, Delclaux C. Airway anatomy as a risk factor for COPD. Thorax 2015;70:586.
- Smith BM, Hoffman EA, Rabinowitz D, et al. Comparison of spatially matched airways reveals thinner airway walls in COPD. The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study and the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS). Thorax 2014;69:987-96.
- Pu J, Leader JK, Meng X, et al. Three-dimensional airway tree architecture and pulmonary function. Acad Radiol 2012;19:1395-401.
- Tsuda A, Savilonis BJ, Kamm RD, et al. Periodic flow at airway bifurcations. III. Energy dissipation. J Appl Physiol (1985) 1990;69:562-9.
- Lin CL, Tawhai MH, Hoffman EA. Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs. Wiley Interdiscip Rev Syst Biol Med 2013;5:643-55.
- Hsia CC, Hyde DM, Ochs M, et al. An official research policy statement of the American Thoracic Society/ European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med 2010;181:394-418.
- Donohue KM, Hoffman EA, Baumhauer H, et al. Asthma and lung structure on computed tomography: the Multi-Ethnic Study of Atherosclerosis Lung Study. J Allergy Clin Immunol 2013;131:361-8.e1-11.

BMJ