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ABSTRACT
Idiopathic pulmonary fibrosis is a progressive lung
disease that carries a poor prognosis and for which there
are no effective therapies. Although the excessive
deposition of extracellular matrix, combined with
evidence of recurrent injury to the alveolar epithelium,
are well-described there is a pressing need to
understand these processes better at a molecular level
and thus to identify potential therapeutic targets in this
intractable disease. This review considers some recent
advances published in Thorax and elsewhere that have
improved our understanding of the pathophysiology of
idiopathic pulmonary fibrosis, using data both from
human cells and tissue and from animal models of
pulmonary fibrosis. The studies particularly address the
fate of the alveolar epithelial cell and mechanisms of
fibrogenesis, and identify mechanistic pathways shared
with co-existing conditions such as lung cancer and
pulmonary hypertension. The concepts of physiological
biomarkers of disease progression and prognosis are also
discussed.

Idiopathic pulmonary fibrosis (IPF) is a progressive
fibrotic lung condition that is uncommon but not
rare. In the UK, the incidence of IPF is 4.6 per
100 000 person-years and has increased over recent
years.1 The pathophysiology of IPF remains poorly
understood, but is an area of very active research
that should yield effective treatments for this
condition, which currently has a poorer prognosis
than many malignancies. The increased research
activity in this area is reflected in the publication of
15 IPF-related studies in Thorax since 2008,
addressing aspects of disease pathophysiology and
prognostic factors.

THE PATHOPHYSIOLOGY OF IPF
Usual interstitial pneumonia is the histological
hallmark of IPF. Injury to the alveolar epithelium
followed by aberrant repair is a central pathogenic
mechanism in IPF,2 and this dysregulated repair is
characterised by ‘fibroblast foci’, aggregates of
activated myofibroblasts3 4 whose extent correlates
with poorer prognosis.5 Myofibroblasts are highly
synthetic cells and important effector cells in IPF.6

The origins of fibroblast foci remain unknown, but
they may arise from epithelialemesenchymal
transition (EMT), from division and differentiation
of resident lung fibroblasts or from recruitment of
circulating fibrogenic stem cells to the lung.6 7

Airway smooth muscle cells (ASMCs) are also
found in the interstitium of fibrotic lungs8 and may
be recruited by coagulation signalling.9 ASMCs can
be induced to secrete chemokines, cytokines and
growth factors, and to perpetuate inflammation.10

The role of inflammation in IPF is contro-

versialdearly concepts of IPF pathophysiology
proposed that inflammation was central to disease
initiation11 12; more recently inflammation has
been viewed as of little significance.2 Recent
studies, for example correlating pulmonary
inflammation and poorer prognosis13 or providing
evidence of adaptive immune responses in the IPF
lung,14 have suggested that immune mechanisms
play a role in disease progression and potentially in
disease initiation.

Epithelial response to injury
Death of alveolar epithelial cells
Alterations in the phenotype of the alveolar
epithelium are a central feature in IPF. The
pulmonary epithelial cell has a number of potential
fates following injury: recovery and repair, caspase-
dependent death by apoptosis or phenotypic
differentiation into a fibroblastic cell (EMT). Inhi-
bition of epithelial cell apoptosis prevents devel-
opment of fibrosis in the mouse bleomycin
model,15 and two recent papers have identified
a mediator of epithelial cell death that merits
further investigation in IPF. Oikonomou and
colleagues found that gelsolin, a gene overexpressed
in the lungs of bleomycin-treated mice,16 was also
upregulated in patients with IPF or fibrotic non-
specific interstitial pneumonia (NSIP), but not
other forms of interstitial lung disease (ILD).17

Mice deficient in gelsolin were protected from
bleomycin-induced inflammation and fibrosis, and
bone marrow transplant experiments demonstrated
that gelsolin expression in lung tissue cells (as
opposed to leucocytes) was required for develop-
ment of lung fibrosis. At a molecular level, gelsolin
regulates cellular cytoskeletal dynamics, and its
cleavage by active caspase-3 leads to cellular
collapse during apoptotic cell death. The authors
propose that actin-modifying or gelsolin-targeting
drugs could ‘rescue’ epithelial cells in IPF, assuming
gelsolin cleavage is not too far downstream in
apoptotic signalling pathways for long-term cell
viability.18 Richter et al examined the effects of
endostatin, a product of collagen XVIII cleavage, on
lung epithelial cells.19 Endostatin levels were
elevated in bronchoalveolar lavage (BAL) and
plasma from patients with IPF compared with
controls. Endostatin induced apoptotic death and
impaired proliferation of pulmonary epithelial cells
in vitro. These findings, together with the known
antiangiogenic effects of endostatin, suggest
a generalised deleterious effect of endostatin on
wound repair. Further studies await the develop-
ment of effective inhibitors of endostatin activity.

Epithelial regeneration
Recurrent epithelial cell death induces a regenera-
tive response, activating signalling pathways more
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traditionally associated with lung development, such as the
Wnt/b-catenin pathway.20 Bronchiolisation of the distal airways
occurs in IPF, with alveolar structures replaced by enlarged distal
airspaces or cysts, covered by epithelial cells with characteristics
of proximal airway epithelial cells and often mucus producing.
Plantier et al21 examined pathways governing mucus cell
differentiation in lung tissue from patients with IPF and other
chronic pulmonary disorders. They found that mucus cells lining
the IPF distal airways expressed the mucin gene MUC5B, typi-
cally associated with submucosal glands, but not MUC5AC,
although both are major components of airway mucus. Neure-
gulin1a, which drives mucus cell differentiation in vitro, was
ectopically expressed in lungs from patients with IPF and may
signal in a paracrine manner to cause bronchiolisation of the
alveolar epithelium. Altered transcription factor expression was
also observed, suggesting abnormal epithelial programming in
IPF. Fascinatingly, a genome-wide linkage study in IPF has
subsequently identified a common polymorphism in the
MUC5B gene promoter, greatly over-represented in IPF patient
populations, that is associated with markedly increased
production of MUC5B.22

Epithelialemesenchymal transition
Mechanisms of EMT have also received attention in Thorax.
Calabrese and colleagues23 assessed the role of squamous cell
carcinoma antigen (SCCA) as a marker of, and a potential
contributing factor to, epithelial instability in IPF. SCCA is
a serine protease inhibitor with pleiotropic biological activities,
including roles in cell migration, adhesion and proliferation.
SCCA was overexpressed in the lungs of patients with IPF and
specifically in metaplastic squamous and bronchiolar epithelial
cells that also stain strongly for the fibrogenic cytokine, trans-
forming growth factor b (TGFb). The authors highlight the
potential of SCCA as a marker of poor prognosis but, more
interestingly, given that IPF populations have a greatly increased
risk of developing squamous carcinoma of the bronchus,24 25

speculate that SCCA expression could identify cells with
potential for malignant transformation.

Fibrinolytic activity is suppressed in IPF, resulting in fibrin
deposition in the interstitium and alveolar spaces.26 Fibrinolysis
is mediated by production of urokinase-type plasminogen acti-
vator, which is inactivated by plasminogen activator inhibitor-1
(PAI-1). Studies by Senoo and colleagues27 showed that PAI-1 is
predominantly expressed in the epithelial lining of the honey-
comb lung, hyperplastic type 2 pneumocytes and alveolar
macrophages in IPF. They showed that inactivation of PAI-1
using small interfering RNA (siRNA) limits the development of
bleomycin-induced pulmonary fibrosis in mice. Delayed admin-
istration of PAI-1-siRNA during the ‘fibrotic phase’ of the bleo-
mycin model also limited injury, implying that PAI-1-siRNA has
direct antifibrotic effects. In addition, cell culture experiments
showed that PAI-1-siRNA could inhibit TGFb-mediated EMT in
lung epithelial cell lines. Notwithstanding the potential chal-
lenges of siRNA delivery in humans, this pathway is clearly
worthy of further investigation.

An interesting study by Jayachandran and colleagues28

evaluated the role of zinc finger (SNAI) transcription factors in
TGFb-induced EMT. SNAIs regulate EMT during embryonic
development and in disease,29 and SNAI expression is induced by
TGFb.30 Jayachandran and colleagues showed that TGFb1
induces EMTand increases SNAI1 and SNAI2 protein expression
in mouse and human epithelial cells. Overexpression of SNAIs
could induce EMT in human epithelial cells, even in the absence
of TGFb. Conversely, siRNA silencing of SNAIs attenuated cell

migration, a key requirement for EMT, and reduced EMT in those
cells in response to TGFb. Increased levels of SNAIs could be
detected both in the bleomycin mouse model and in patients
with IPF.

Mechanisms of fibrogenesis
Borie and colleagues31 studied the expression of receptors for
somatostatin (growth hormone release-inhibiting hormone, GH-
RIH) in bleomycin mouse models and the effects of pasireotide,
a long half-life somatostatin analogue. The authors had previ-
ously shown that human lung fibroblast binding of a somato-
statin agonist, octreotide, was increased in cells derived from
patients with IPF and correlated with the severity of fibrosis.32

All five known somatostatin receptors (sst1esst5) were detected
in the lungs of bleomycin-naïve mice; four were modulated by
bleomycin treatment. The sst2 receptor was expressed in both
inflammatory cells and resident lung cells, and upregulated in
fibrotic areas of IPF lungs. Sst2 also plays a prominent role in the
biological effects of somatostatin analogues.33 In mice given
intratracheal bleomycin, immediate subcutaneous administra-
tion of pasireotide reduced inflammatory cell influx into the
airways, improved lung injury scores, reduced lung collagen and
inhibited increases in TGFb and connective tissue growth factor.
Delayed administration of pasireotide improved the majority of
these parameters, but to a lesser degree. This study provides
encouraging evidence for an antifibrotic action of pasireotide,
although the reduced efficacy of delayed treatment may indicate
a reduced effect in established fibrosis.
In similar experimental systems, Königshoff and colleagues34

evaluated the expression of 5-hydroxytryptamine (serotonin, 5-
HT) receptors in IPF and experimental pulmonary fibrosis.
Serotonin is best known as a neurotransmitter but is mostly
found outside the central nervous system.35 Serotonin is
synthesised from tryptophan, stored in platelets (which release it
with the membrane-bound serotonin transporter, 5-HTT) and
metabolised to 5-hydroxyindoleacetic acid (5-HIAA) in the liver.
Serotonin has multiple actions in different physiological systems
(including regulation of cell migration, proliferation, cytokine
production and vasoregulation) that are mediated by seven
different 5-HT receptor subtypes (5-HTR1 to 5-HTR7). This
study found that 5-HTTwas downregulated and several 5-HTRs
upregulated in IPF and NSIP lungs compared with controls. 5-
HTR2A upregulation appeared specific to IPF and, with 5-HTR2B,
localised to key cell types involved in disease pathogenesis.
Similarly, 5-HTR2A and 5-HTR2B were upregulated and 5-HTT
downregulated in bleomycin-instilled mice. Moreover, intraperi-
toneal administration of a 5-HTR2A/B antagonist, terguride, had
beneficial effects upon lung compliance, collagen content and
fibrosis. Terguride treatment of human lung fibroblasts also
significantly reduced collagen production in response to TGFb
and WNT3a. These data are in agreement with a previous
study36 and support the concept that 5-HTsignalling is altered in
IPF and that HTR2A/B antagonism may have potential anti-
fibrotic effects. Interestingly, serotonin is also a potent vasocon-
strictor and may contribute to the pathogenesis of pulmonary
hypertension (PH),37 which is common among patients with
IPF.38 The decreased levels of 5-HTT among patients with IPF
may increase serotonin levels, and a clinical trial of terguride in
IPF with or without PH merits consideration.
Oxidanteantioxidant imbalances in the lower respiratory

tract may have a role in the development of IPF,39 with multiple
strands of evidence of increased oxidant stress.40 41 Reactive
oxygen species (ROS) have widespread effects on pulmonary
cells and growth factors (including TGFb), and can promote
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a profibrogenic environment.39 The phagocyte NADPH oxidase
is a membrane-bound enzyme complex that catalyses ROS
production, while a family of non-phagocytic NADPH oxidases
are designated as NOX.42 NOX4 is expressed in pulmonary
artery smooth muscle cells and may contribute to the patho-
genesis of PH.43 A previous study of cardiac fibrosis showed that
NOX4 may mediate TGFb-induced fibroblast differentiation
into myofibroblasts.44 On this background, Amara and
colleagues45 investigated NOX expression in human lung fibro-
blasts and their roles in mediating TGFb-induced fibroblast
differentiation into myofibroblasts. They found that IPF fibro-
blasts have increased NOX4 expression, increased intracellular
ROS production and increased myofibroblast differentiation. A
significant correlation between expression of the myofibroblast
marker a-smooth muscle actin (a-SMA) and NOX4 is suggestive
of a role for NOX4 in myofibroblast differentiation. TGFb
treatment of lung fibroblasts increased NOX4 and a-SMA
expression, and ROS production. These effects were more
marked with IPF fibroblasts perhaps due to autocrine effects of
raised TGFb levels in IPF. TGFb-mediated increases in a-SMA
mRNA were inhibited by pretreatment of fibroblasts with N-
acetylcysteine, or by siRNA silencing of NOX4, indicating that
oxidanteantioxidant imbalance may influence TGFb signalling.
The efficacy of N-acetylcysteine as a single agent for IPF treat-
ment is being addressed by the PANTHER-IPF trial (clin-
icaltrials.gov/ NCT00650091), following previous evidence of
beneficial effects in the IFIGENIA trial.46

The last paper in this section, from Knobloch et al,47 pertains
to the roles of ASMCs and inflammation in the pathogenesis of
IPF. Endothelin-1 (ET-1) is both a potent vasoconstrictor and
a proinflammatory cytokine.48 ET binds to two G protein-
coupled receptors (ETAR and ETBR) that are widely expressed in
the lung. The authors showed that ET-1, signalling via ETAR,
could induce its own transcription and that of gran-
ulocyteemacrophage colony-stimulating factor (GM-CSF) in
human ASMCs, while tumour necrosis factor a (TNFa) induced
transcription of both ET-1 and GM-CSF, revealing a complex
network of interactions between these molecules. ET-1 activation
of the downstream ERK/p38MAPK signalling pathways was
inhibited by bosentan (a dual endothelin receptor antagonist). By
inhibiting the TNFa/ET-1/GM-CSF network, bosentan demon-
strated anti-inflammatory properties and the authors speculated
that it would be a useful treatment in early IPF. However, the
BUILD-3 trial of bosentan failed to achieve its primary end point
of ‘reduced morbidity/mortality’ in IPF, perhaps because these
cytokine networks are more relevant to early disease. ET-1 is also
a known common mediator in IPF and PH.49 All three papers in
this section, therefore, investigate mediators that have been
implicated in both PH and IPF, reflecting increasing recognition of
shared pathophysiological mechanisms as well as clinical co-
existence of these two conditions.

One further pathophysiological insight came from Richter
et al’s investigation of bacterial colonisation of the lower airways
in patients with Wegener granulomatosis or IPF.50 It was found
that 36% of patients with IPF had lower airway bacteria
detected in BAL, some of whom remained culture positive
3 months later. Positive bacteriology was associated with
elevated levels of the anti-inflammatory cytokine, interleukin 1
receptor antagonist (IL-1ra). It is unclear whether the presence
of bacteria was related to radiological changes such as traction
bronchiectasis and whether bacterial colonisation is a cause or
a consequence of structural lung damage. Nonetheless, recent
evidence shows that neutrophilic inflammation is associated
with poorer prognosis in IPF and may be induced by infectious

as well as non-infectious stimuli in the lung.13 In the light of
these data, and the availability of new molecular microbiomic
techniques, it may be timely to revisit the roles of inflammation
and infection in disease progression in IPF.

PROGNOSTIC INDICATORS IN IPF
IPF has a variable natural history; some patients die within
a year of diagnosis while others live >10 years.51 We currently
lack prospectively validated, robust biomarkers of disease
progression to advise patients or inform decisions such as referral
for and timing of lung transplantation.52 Forced vital capacity
(FVC; >10%) and transfer factor of the lung for carbon
monoxide (TLCO; >15%) decline within 6 months of diagnosis
are specific markers of poor short-term prognosis in patients
with IPF53e55 but are not particularly sensitive56 and provide
prognostic information only after 6 months of a median
2e3 years’ life expectancy have elapsed. Several trials have
shown the usefulness of quantitative scoring of high resolution
CT (HRCT) scans in predicting prognosis at baseline,57 58 but
HRCT is susceptible to interpretive variability, even among
expert radiologists.58 There remains a need for a simple, practical
and accurate prognostic indicator in IPF.
Corte et al59 evaluated an inert gas rebreathing Innocor device

for non-invasive measurement of pulmonary blood flow (PBF) in
patients with ILD. The authors found strong correlation and,
importantly, reasonable agreement between PBFINNOCOR and
the ‘gold standard’ Fick calculation of cardiac output. The
sample size was small (15 patients with IPF) and, while CO has
prognostic significance in pulmonary arterial hypertension, its
role in ILD is less certain. It would be useful to conduct
a prospective trial in patients with IPF to correlate PBFINNOCOR

with mean pulmonary artery pressure, pulmonary vascular
resistance, lung function decline and mortality.
Gas exchange is impaired in IPF and worsens with exercise.60

The 6 min walk test (6MWT) is the most common and best
validated form of exercise testing for IPF. Both SaO2 desaturation
to <88% during exercise61 and shorter walk distance62 at base-
line can predict prognosis. However, only the walk distance is
highly reproducible,63 allowing its serial use to monitor disease
progression. Flaherty and colleagues found that a 6-month
decrease in walk distance of >200 feet is associated with
increased mortality in IPF61 and a change in 6MWT walk
distance (6MWD) is increasingly used as an end point in clinical
trials. However, the figure of 200 feet (w61 m) was chosen
a priori and only a few patients will exhibit a 6MWD decline of
that magnitude. It is, therefore, uncertain what distance
constitutes the minimum important difference (MID) that is
clinically meaningful. Swigris et al64 attempted to answer this
question by calculating changes in 6MWD among patients with
IPF over a 12-month period and determining the MID for
6MWD by retrospective analysis of data from the BUILD-1
trial.65 The authors used anchor-based (with Saint George’s
Respiratory Questionnaire (SGRQ) score and FVC selected as
the two ‘anchor categories’) and distribution-based methods to
generate 10 MID estimates. The range was 10.8e58.5 m, with
a mean of 28 m. This mean corresponds closely to the estimated
MID (29e34 m) from another published study.66 However, it
should be noted that patients with severe and mild disease were
not represented, so the estimated MID may not be applicable to
those groups. The MID for SGRQ scores used in the anchor-
based method was derived from the same patient population so
further validation of 6MWD MID in other patients with IPF is
required.
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Quantifying perception of quality of life of patients with IPF
is important since IPF has a devastating effect on functional
status as well as life expectancy. Improvements in health-related
quality of life (HR-QOL) represent a tangible benefit for
patients, and several clinical trials have used HR-QOL as
a secondary end point. An ideal instrument to measure HR-QOL
should be valid, reliable, responsive and interpretable.67 Condi-
tion-specific instruments, tailored to patients with the disease of
interest, are considered more sensitive and better targeted than
generic instruments in detecting effects of that disease on
patients’ lives.67 Yorke and colleagues68 developed an IPF-specific
version of the SGRQ, again using retrospective analysis of data
from the BUILD-1 trial and statistically based methods used to
develop the chronic obstructive pulmonary disease (COPD)-
specific SGRQ. They derived the first IPF-specific HR-QOL score,
the SGRQ-I, that can be used to track changes in patients’
perception of HR-QOL over time. Prospective studies in other
groups of patients with IPF will be needed to validate the
SGRQ-I.

CLINICAL TRIALS IN IPF
Between 2008 and 2010, there was only one clinical trial
pertaining to IPF published in Thorax, the first randomised
controlled trial of exercise training in ILD.69 Exercise training
improves exercise capacity and HR-QOL in patients with
COPD70 but its role in patients with ILD is less clear. This
study compared a twice-weekly exercise training programme
for 8 weeks versus once-weekly telephone contact for support
and general health advice in 57 patients with ILD (34 with IPF)
and included patients with a wide range of disease severity. The
primary end point was 6MWD. Drop-out rates were lower
than in many pharmacological trials, suggesting that exercise
training is well tolerated. At 9 weeks there was an improve-
ment in 6MWD in the exercise compared with the control
group, with a mean increase of 35 m, and improvements in
symptom scores. The improvements in exercise capacity and
symptoms were not sustained at 6 months. This could be due
to disease progression negating the earlier benefits of exercise
training or reflect the need for a formal maintenance exercise
programme to sustain improvement. Although the improve-
ments are only modest, and larger studies with longer follow-
up and inclusion of maintenance exercise are warranted,
exercise training should be considered for patients with IPF
who have dyspnoea and diminished functional capacity and no
contraindications.

CONCLUSIONS
The papers on IPF pathogenesis have not only highlighted the
complexity of this disease but also suggested common mecha-
nistic pathways for conditions (such as lung cancer and PH) that
may co-exist with IPF. Impressively, many studies combined the
use of patient tissue with interventional studies in the bleo-
mycin mouse model and, despite the recognised limitations of
the model for study of IPF, showed good congruity of experi-
mental results. These studies identify some encouraging thera-
peutic possibilities. Further papers have increased our
understanding of the natural history of the disease and identified
useful end points for clinical trials. The clinical trial discussed
showed the potential benefit of pulmonary rehabilitation among
patients with IPF. Future trials should robustly assess improve-
ments in the HR-QOL of patients with IPF, in addition to effects
of treatments on lung function and, most importantly, on the
prognosis of this condition.
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