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An important effect of steroids on angiogenesis in asthma

T
he vascular changes which occur in
airways diseases such as asthma are
starting to attract considerable atten-

tion from the respiratory research com-
munity. In addition to the vascular
engorgement which occurs as part of the
acute inflammatory process, several
groups have demonstrated increased
new vessel formation (angiogenesis) in
chronic asthma.1–3 Not only does this
occur in adult asthma, but recent studies
suggest it is a prominent feature of
childhood asthma, suggesting that vas-
cular remodelling may occur relatively
early in the asthmatic process.4 The
increased airway wall thickening pro-
duced by the expanded vasculature
causes enhanced airway narrowing on
stimulation with constrictor agents,
thereby contributing to bronchial hyper-
responsiveness. Furthermore, the
increased blood flow may increase
inflammatory cell trafficking and exuda-
tion and transudation of cytokines and

mediators and contribute to airway
hyper-responsiveness by supporting the
increased airway smooth muscle mass
which is a key feature of asthma histo-
pathology.5

There are a number of candidate
angiogenic factors for these changes,
perhaps the most important of which
are vascular endothelial growth factor
(VEGF) and angiopoietin-1, distinct
molecules which act together at different
stages of angiogenic processes in several
biological systems.6–15 Other molecules
with angiogenic potential found in the
airways include fibroblast growth factor,10

angiogenin10 and chemokines such as
interleukin (IL)-816 and eotaxin.17 VEGF
is subject to dynamic regulation while
angiopoietin-1 is less so, and the latter
may contribute in a more permissive way
to the remodelling process. A number of
stimuli can increase VEGF release from
lung cells including cigarette smoke,
hypoxia and Th1 and Th2 cytokines such

as IL1b, IL4 and IL13, remodelling cyto-
kines such as TGFb and IL6, and vaso-
active mediators such as bradykinin and
PGE2.18–27 Autocrine production of PGE2

may mediate the effect of some of these
agents,18 27 and there is evidence from
studies in mouse models to suggest that
autocrine nitric oxide production may
mediate some (but not all) of the effects
of released VEGF in mouse asthma
models.28 Endogenous angiostatic mole-
cules such as endostatin and angiopoie-
tin-2 exert a brake on this process, and
the dynamic interplay between these and
pro-angiogenic molecules helps shape
repair and remodelling.29

Interestingly, recent studies in vitro
with rhinovirus have shown that infec-
tion increases VEGF30 31—but not angio-
poietin30—release, suggesting a
mechanism whereby recurrent viral air-
way infections might contribute to airway
remodelling in a cyclical manner. In
mouse asthma models, airway VEGF is
increased and VEGF receptor inhibitors
inhibit cellular influx as well as inhibiting
airway hyper-responsiveness and redu-
cing microvascular leakage,32 consistent
with VEGF having an important deleter-
ious effect in asthma. In these and other
studies,15 VEGF appears to regulate
inflammatory processes as well as remo-
delling, which suggests that it is a complex
multifunctional molecule with a wide
repertoire of effects. There also appears to
be a close relation between VEGF and
matrix degradation which probably
reflects the fact that establishment of
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new vessels requires matrix turnover and
that, when the matrix is damaged, new
vessels are required for tissue repair.

The study in this issue of Thorax by
Feltis and colleagues33 (see page 314)
addresses an important issue—namely,
whether these angiogenic processes are
modified by glucocorticoids. The authors
undertook a placebo-controlled interven-
tion study with inhaled fluticasone in 35
patients with mild asthma and performed
immunohistochemistry and image analy-
sis to obtain quantitative measures of
vessels, angiogenic sprouts, VEGF, VEGF
receptor 1, VEGF receptor 2 and angio-
poietin-1 staining in airway biopsy speci-
mens. They also measured VEGF
concentrations in lavage fluid. The key
findings were that vessel number, VEGF
and sprout staining were decreased after
3 months of inhaled steroid treatment.
However, no further reduction was seen
at 12 months and relatively high doses of
fluticasone were required. Their findings
suggest that inhaled steroids downregu-
late angiogenic remodelling in the air-
ways in asthma, associated with
decreasing VEGF activity within the air-
way wall. Interestingly, VEGF levels in
lavage fluid were not altered nor were
receptor numbers or staining for angio-
poietin-1. An interesting finding in this
study was the fact that the vascular
‘‘sprouts’’, which these authors have
reported previously,34 were also reduced
by fluticasone treatment. It would seem
likely that these cystic structures in the
vascular wall of airway vessels may be
newly forming vessels.

Glucocorticoids have also been shown
to reduce VEGF release in airway cell
systems in culture, although their precise
mechanism of action has not been estab-
lished.35 VEGF regulation is complex and
is controlled at both transcriptional and
translational levels. Transcription factor
binding sites in the VEGF promoter for
specificity protein-1 (SP-1) seem to be
particularly important, at least in airway
smooth muscle,26 although this has not
been studied in other airway cells. VEGF
mRNA has regulatory elements in both its
39 and 59 UTR which control its degrada-
tion and are potential sites for post-
transcriptional regulation.36 It is not clear
whether the effect of glucocorticoids on
VEGF production and angiogenesis is
mediated by an effect on transcriptional
or translational processes.

If glucocorticoids inhibit bronchial vas-
cular changes, what is known about other
asthma treatments? Interestingly, long-
acting b-agonists have been shown to
reduce the vascularity of asthmatic air-
ways in vivo.1 Although there is some
evidence that it might be due to a reduc-
tion in VEGF,35 an alternative explanation

might be a reduction in the level of pro-
angiogenic chemokines such as IL837 and
eotaxin.38 The leucotriene antagonist pran-
lukast reduced sputum VEGF levels in a
small study of untreated asthmatic subjects
but had no additional effect when given
concomitantly with inhaled steroids.39

Most studies on bronchial angiogenesis
to date have used cell culture systems
with relevant airway cells in vitro or biopsy
studies such as those of Feltis et al.33 Recent
reports of new three-dimensional cell
culture systems for studying angiogenesis
in vitro40 and reports using magnetic
resonance imaging in animal models in
vivo41 might provide additional tools,
allowing a greater understanding of this
important process over the next few years.

Thorax 2007;62:283–285.
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Are new diagnostic strategies providing answers?

T
horacic oncology providers con-
fronted with the task of diagnosing
and following patients at risk for

cancer of the lung face a number of major
dilemmas, some of which directly affect
the ability to diagnose. First, the majority
of patients with lung cancer are diag-
nosed at a late stage and ,15% survive
5 years, so a degree of nihilism is present
in patients, providers and policy makers.
Second, risk paradigms are changing,
from smoking only to occupational,
environmental or home carcinogens to
the risk associated with premalignant
airway changes. Third, advances in early
diagnostic options have the potential to
discover lung carcinoma while still in a
pre-invasive, minimally invasive stage or
as small peripheral nodules. These points,
taken in conjunction with the initial
clinical results of the ELCAP study sug-
gesting that cure is possible,1 raise the
need to examine early diagnostic strate-
gies critically.

In this issue of Thorax (see page 335)
Loewen et al report their initial clinical
findings in bimodality surveillance of
high risk for lung cancer populations
using low dose spiral CT scanning (SCT)
and autofluorescence bronchoscopy
(AFB).2 They examined two null hypoth-
eses: (1) AFB was equivalent to conven-
tional sputum cytology (CSC) for the
detection of pre-malignant lesions and
(2) AFB and SCT would be equivalent to
SCT alone for the detection of lung cancer

in high-risk patients. The authors con-
clude that AFB is significantly superior to
CSC for the detection of airway pre-
malignancy in this cohort of high-risk
patients and, in fact, argue that, as a
surveillance tool, AFB exceeds the cancer
detection rate of colonoscopy in patients
with positive fecal occult blood. However,
the authors were not able to demonstrate
a significant superiority of bimodality
surveillance with both AFB and SCT over
SCT alone, but question whether a larger
sample size would have found bimodality
significantly better.

Beyond their null hypotheses, the
article raises several points that are
healthy components of any discussion of
the future approach to patients at high
risk of lung cancer. These include:

1. Premalignant changes are common
(66% of the 169 patients receiving all
components of surveillance) in this
high-risk cohort.

2. AFB is reasonable in patients with
atypia in CSC; however, CSC was
inadequate for detection of pre-
malignant cytology when frank car-
cinoma was not present.

3. Screening and surveillance are very
different and surveillance of a select
population may be a superior strat-
egy in lung cancer management.

4. Regardless of the histology of the
lung cancers detected in this study
(.50% were adenocarcinoma), the

majority of patients had central air-
way pre-malignant transformation.

5. Spiral CT scan protocols are not
adequate at this time for detecting
central airway disease by them-
selves.

6. Central airway pre-malignant
lesions appear to be predictive of
the presence of peripheral adenocar-
cinoma identified by SCT.

Several of these observations or con-
clusions have not been supported by
other articles in the field. Haubinger et
al3 performed a prospective, randomised,
multicentre trial comparing white light
bronchoscopy (WLB) with or without
AFB. The high-risk group defined by
chronic obstructive pulmonary disease
plus occupational exposure failed to
demonstrate severe dysplasia or carci-
noma-in-situ (CIS), although it was
unclear to what extent metaplasia or mild
dysplasia were seen in this cohort.
Swensen et al4 and Bechtel et al5 in two
separate studies used bimodality testing
using CSC as one portion of their testing
and suggested a more significant contri-
bution for CSC in lung cancer detection
than was suggested by Loewen et al.2

However, because of different study
designs including inclusion criteria,
biopsy and statistical methods and
pathology review variations,6 it may be
nearly impossible to compare findings
from one study to another.

Although Loewen et al raise several
compelling clinical questions in their
paper, the most pivotal may well be
management issues of airway cellular
transformation including dysplasia and
CIS. The diagnosis, progression and treat-
ment of dysplasia and CIS, especially in
high-risk populations, are demanding
more clinical attention to determine
surveillance strategies and may affect
overall outcomes of lung cancer in the
near future. Intense interest in this topic
was indicated when most sessions at the
11th World Congress on Lung Cancer in
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