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ABSTRACT
Malignant pleural mesothelioma (MPM) is an aggressive 
cancer most commonly caused by prior exposure to 
asbestos. Median survival is 12–18 months, since 
surgery is ineffective and chemotherapy offers minimal 
benefit. Preclinical models that faithfully recapitulate the 
genomic and histopathological features of cancer are 
critical for the development of new treatments. The most 
commonly used models of MPM are two- dimensional 
cell lines established from primary tumours or pleural 
fluid. While these have provided some important insights 
into MPM biology, these cell models have significant 
limitations. In order to address some of these limitations, 
spheroids and microfluidic chips have more recently been 
used to investigate the role of the three- dimensional 
environment in MPM. Efforts have also been made to 
develop animal models of MPM, including asbestos- 
induced murine tumour models, MPM- prone genetically 
modified mice and patient- derived xenografts. Here, we 
discuss the available in vitro and in vivo models of MPM 
and highlight their strengths and limitations. We discuss 
how newer technologies, such as the tumour- derived 
organoids, might allow us to address the limitations of 
existing models and aid in the identification of effective 
treatments for this challenging- to- treat disease.

INTRODUCTION
Malignant pleural mesothelioma (MPM) is a rela-
tively rare aggressive cancer.1 It is most often caused 
through inhalation of asbestos fibres, although 
there is a long latency of >30 years between expo-
sure and the development of disease.1 Between 
1994 and 2008, 92 253 mesothelioma deaths were 

reported to WHO, with the majority of cases being 
from Europe, and age- adjusted mortality rates 
increased at 5.37% per year.1 Following the ban 
on importation and use of asbestos in many high- 
income nations, it is predicted that MPM death 
rates will fall in these nations between 2020 and 
2040.2–5 For example, in the UK, where the use 
of all types of asbestos was fully banned in 1999,6 
the mesothelioma incidence rate is projected to fall 
by 53% between 2014 and 2035.7 Yet, although 
asbestos use is prohibited in many countries, the 
industrialisation of low- income andmiddle- income 
nations is fuelling the use of asbestos and subse-
quently the incidence of MPM is expected to rise in 
the coming decades.8

MPM affects the mesothelial cells of the pleura 
and presents as three main histopathological 
subtypes (table 1): polygonal ‘epithelioid’ MPM 
is the most common subtype, representing 60% of 
cases; spindle- shaped ‘sarcomatoid’ MPM accounts 
for 10% of cases and biphasic mesothelioma, 
consisting of a mixture of epithelioid and sarco-
matoid cells, accounts for the remaining 30%.9 10 
Mesothelial markers used to identify MPM include 
calretinin, Wilms’ tumour gene product (WT- 
1), mesothelin, cytokeratin (CK) 5/6, HBME- 1 
antigen, thrombomodulin and podoplanin (D2- 
40).10 However, being less differentiated, many 
sarcomatoid MPM tumours only express CKs and 
a variable amount of calretinin, but gain expression 
of vimentin and smooth muscle markers.10 The 
histopathological subtype as well as the stage of 
disease impacts overall survival with a diagnosis of 
epithelioid MPM being associated with the longest 

Table 1 Characteristics of MPM subtypes

Subtype Morphology Markers
Prognosis
(months) Genetic alteration*

Epithelioid Polygonal Calretinin, WT- 1, mesothelin, CK5/6, 
podoplanin, HBME- 1 antigen, 
thrombomodulin

13.1 CDKN2A, BAP1, NF2, SETD2, LATS1, LATS2, CDKN2B, 
MST1, MTOR, STK3, DDX3X, DDX51, SETD5, SF3B1 and 
TRAF7

Sarcomatoid Spindle- shaped Mostly express only CKs,
calretinin, vimentin and smooth 
muscle

4 CDKN2A, BAP1, NF2, SETD2, LATS1, LATS2, CDKN2B, 
MST1, MTOR, SETDB1, TP53, TSC2, ULK2 and SAV1

Biphasic- E Mixed Mixed 8.4 CDKN2A, BAP1, NF2, SETD2, LATS1, LATS2, CDKN2B, 
MST1, MTOR, TSC1, STK3, DDX3X, DDX51, SETD5, SF3B1, 
TRAF7, SETDB1, TP53, ULK2 and SAV1

Biphasic- S CDKN2A, BAP1, NF2, SETD2, LATS1, LATS2, CDKN2B, 
MST1, MTOR, DDX3X, SETD5, SF3B1, TRAF7, SETDB1, 
TP53, TSC1, TSC2, ULK2 and SAV1

Ref 9 10 10 11 34

*Subtypes for genetic alterations refer to the molecular classification based on RNA- sequencing data.
CK, cytokeratin; MPM, malignant pleural mesothelioma; WT- 1, Wilms’ tumour.
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median survival (13.1 months) and sarcomatoid being associated 
with the worst survival (4 months).11 MPM also has great intra-
tumour heterogeneity, which has been studied using a decon-
volution approach which uncovered that all MPM tumours 
comprised combinations of epithelioid- like and sarcomatoid- like 
components but the proportions of each are highly associated 
with prognosis.12

First- line treatments that have been proposed for MPM 
include chemotherapy, surgery, radiotherapy, separately or in 
combination. Surgical procedures such as extrapleural pneu-
monectomy (EPP) and pleurectomy/decortication have been 
proposed as curative or palliative approaches, respectively.13–15 
However, the clinical outcome of the mesothelioma and radical 
surgery (MARS) trial suggested that EPP within trimodal therapy 
has no benefit.16 The benefit of open pleurectomy/decortication 
in addition to chemotherapy is currently under investigation 
in the MARS 2 trial.17 The MesoVATS trial previously showed 
that a video- assisted thoracoscopic partial pleurectomy does not 
improve overall survival of patients.18 At present, the benefits 
of surgery in MPM remains limited. Radiotherapy primarily 
has a role in palliation, but has been suggested as an adjuvant 
to surgery and chemotherapy in multimodality treatment.13 15 
Combination chemotherapy with pemetrexed and cisplatin has 
remained unchanged as the standard of care since 2003 following 
a phase III clinical trial demonstrating superiority of the combi-
nation over cisplatin alone (median survival 13.3 months vs 10 
months).19 In 2016, a phase III trial of the antivascular endo-
thelial growth factor (anti- VEGF) recombinant antibody, bevaci-
zumab, in combination with standard chemotherapy was shown 
to increase survival in comparison to chemotherapy alone 
(18.8 months vs 16.1 months) across all MPM subtypes.20 This 
regimen would not be suitable for patients with cardiovascular 
comorbidities20 and currently is not available due to lack of Food 
and Drug Administration (FDA), European Medicines Agency 
and National Institute for Health and Care Excellence registra-
tion and universal reimbursement.21 22 A recent phase lll trial of 
combined programmed cell death protein 1 (PD- 1) inhibition, 
using nivolumab, and anticytotoxic T- lymphocyte- associated 
antigen- 4 monoclonal antibody ipilimumab, revealed prolonged 
overall survival compared with the standard chemotherapy 
regimen.23 This drug combination which has been recently 
approved by FDA24 showed more benefit for patients with non- 
epithelioid tumours,23 while non- epithelioid subtypes of MPM 
were less responsive to chemotherapy or surgery.25 26

Comprehensive analysis of MPM samples has revealed the 
genomic landscape of this disease. A key finding has been that the 
disease is dominated by loss of function mutations in a number of 
tumour suppressor genes including: (1) cyclin- dependent kinase 
inhibitor 2A (CDKN2A, alias for INK4A/ARF) with homozygous 
deletion in 45%–49% of cases, encodes two alternative reading 
frame proteins p14ARF and p16INK4A (involved in the p53 and 
retinoblastoma protein (RB1) pathways); (2) BRCA associated 
protein 1 (BAP1) mutations are observed in 22%–57% of cases, 
encodes a tumour suppressor that regulates several processes 
including the cell cycle, cell death and the response to DNA 
damage; (3) neurofibromin 2 (NF2) is mutated in 19%–50% of 
cases, encodes Merlin which is involved in the inactivation of the 
receptor- dependent mitogenic signalling pathway, inhibition of 
phosphatidylinositol 3- kinase (PI3K) activity and regulation of 
the hippo pathway.27–40 In addition, TP53 mutations have been 
reported in 4%–20% of cases.34 37 41 42 CDKN2B (alias for INK4B), 
which is adjacent to CDKN2A and encodes p15INK4b also recur-
rently shows loss of copy number.33 34 43 In the COSMIC data-
base, recurrent mutations have also been found in a further set 

of genes including PTEN and RB1.34 Comparisons of mutational 
profiles in the various MPM subtypes reveal common and exclu-
sive mutations. Genetic alterations in CDKN2A, BAP1 and NF2 
are common in all subtypes with higher frequency of BAP1 and 
NF2 in epithelioid and sarcomatoid, respectively.34 Other signifi-
cantly mutated genes include SETD2, LATS1, LATS2, CDKN2B, 
MST1 and MTOR.34 While genetic alterations in STK3, DDX3X, 
DDX51, SETD5, SF3B1 and TRAF7 were exclusively detected in 
epithelioid and biphasic disease, genetic alterations in SETDB1, 
TP53, TSC2, ULK2 and SAV1 were found only in sarcomatoid 
and biphasic disease.34 Notably, TP53 mutations were associ-
ated with a lower survival rate.34 Furthermore, classification of 
biphasic subtype to epithelioid like (biphasic- E) and sarcomatoid 
like (biphasic- S) based on RNA- sequencing, found genetic alter-
ations in STK3 and DDX51 only in biphasic- E and TSC2 only in 
biphasic- S34 (table 1).

Conversely, there are few activating oncogenic driver genes or 
protein- altering mutations in MPM compared with other solid 
tumours.34 37 This unfortunately limits the number of available 
cancer- selective drug targets since existing drugs mostly target 
activating oncogenes. Nevertheless, studies of the fundamental 
biology of MPM have yielded potential novel targeted therapies 
that are currently being tested in clinical trials, including inhib-
itors of histone methyltransferase EZH2, focal adhesion kinase, 
mesothelin, PI3K, mammalian target of rapamycin, PD- 1 and 
programmed death- ligand 1 and anti- angiogenic therapies such 
as VEGF inhibitors.44 45 Unfortunately, many clinical trials in 
MPM have proved negative.44 45 This may reflect the availability 
of drug resistance pathways to MPM tumours. Furthermore, 
the lack of biological biomarkers for responsiveness to most 
targeted therapies has precluded patient stratification and conse-
quently clinical responses restricted to small patient cohorts 
might conceivably have been missed. However, careful patient 
selection might improve drug- responsiveness, as suggested by a 
recent phase IIa trial of a poly- ADP ribose polymerase inhibitor, 
rucaparib, which demonstrated efficacy in patients with BAP1/
BRCA1- deficient malignant mesothelioma.46

The development of new therapeutic approaches for MPM 
requires a larger and more diverse panel of preclinical MPM 
models to recapitulate the patient population both genomically 
and histopathologically as well as the ability to model relevant 
drug response. Consequently, much effort has been invested 
in establishing two- dimensional (2D) cell lines (cells grown 
as flat 2D cultures) from primary MPM tumours and pleural 
effusions.47 48 More complex three- dimensional (3D) in vitro 
models and a number of murine in vivo models have also been 
developed. Here, we discuss the available in vitro and in vivo 
preclinical MPM models, highlighting both their strengths and 
limitations, and the gaps that remain to be filled by improved 
models.

TWO-DIMENSIONAL CULTURE OF HUMAN PLEURAL 
MESOTHELIOMA CELLS
Many human MPM cell lines have been established from tumour 
tissue and pleural effusions48–70 with success rates ranging from 
20% to 84%54 64 68 70 (online supplemental table 1). These cell 
lines represent a spectrum of MPM histopathological subtypes 
and many harbour the genetic aberrations commonly observed 
in MPM tumours, including inactivation of NF2, CDKN2A 
and BAP1 genes.31 39 42 58 71 72 However, most studies have 
not compared cell lines with the original tumour from which 
they were derived to determine how well they recapitulate 
the genomic and histopathological features. To date, such a 
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comparison has only been conducted once and concordance of 
genomic alterations was found to be high between the tumour 
and early passage cell lines, although some single nucleotide vari-
ants (SNVs) were found exclusively in the cell lines.49 This could 
represent the expansion of a rare clone present in the tumour 
or acquisition of new SNVs during in vitro culture. Further-
more, in order to facilitate mesothelioma diagnosis, using a large 
panel of 61 mesothelioma cell lines from pleural effusions,73 a 
genome- wide analysis has been conducted. As a result, it was 
shown that the genes COL3A1, SLPI, ITLN1 and CCL2 are 
expressed preferentially in MPM cells when compared with lung 
adenocarcinomas.73 Accordingly, significantly higher levels of 
secreted CCL2 were found in pleural effusions of MPM patients 

compared with pleural fluid from patients with other metastatic 
cancers or benign conditions.73

The majority of available malignant cell lines can be passaged 
indefinitely. As such, genomic instability, including polyploidy,64 
copy number alterations and the emergence of new aberra-
tions58 74 have been observed following long- term culture of 
MPM models. Moreover, kataegis, the accumulation of a large 
number of single nucleotide substitutions clustered in a single 
locus was reported in MPM cell cultures but not primary tumour 
tissue.49 It has also been shown recently that newly derived 
primary mesothelioma cells display a significantly different tran-
scriptome compared with established MPM cell lines.48 Further-
more, long- term culturing of primary MPM cells can affect their 

Table 2 List of animal models of MPM

Animal model Method (if applicable)
Altered genes (if 
applicable)

Number of MPM 
patients (if 
applicable)

Subtypes of MPM (if 
applicable) Tumour rate

Median survival
(weeks) Ref

Asbestos/Asbestos--
induced

Intrapleural injection of 
carbon nanotube and 
asbestos

– – NA 9.4%–25% 48–80 98

Transtracheal 
intrapulmonary spraying of 
multiwalled CNT*

– – NA 15.8% 70–109 99

Conditional mouse model Intrathoracic injection with 
Adeno- Cre virus†

Nf2;p53
(hom, hom)

– All subtypes 85.5% 19.3 84

Nf2;p53
(het, hom)

– All subtypes 61.8% 30.7

Nf2;p53
(hom, het)

– Epithelioid and 
sarcomatoid

40% 86.4

Nf2;Ink4a/Arf (hom, hom) – All subtypes, predominantly 
sarcomatoid and biphasic

82.5% 31.4

Nf2;Ink4a/Arf (het, hom) – All subtypes 34.1% 58.6

Nf2;Ink4a/Arf (hom, het) – All subtypes 34.6% 70.7

Nf2;p53;Ink4a* (hom, 
hom, hom)

– Sarcomatoid and biphasic 100% 11.4

Nf2;p53;Ink4a* (hom, 
hom, het)

– Sarcomatoid and biphasic 93.8% NA

Intrapleural injection with 
Adeno- Cre virus

Nf2;Ink4a/Arf
(hom, hom)

– Predominantly sarcomatoid 
and some biphasic,86 all 
subtypes87

63%86 2786, 34.887 86 87

Bap1;Nf2
(hom, hom)

– Predominantly biphasic 
and some sarcomatoid

17% 21 86

Bap1;Ink4a/Arf
(hom, hom)

– Predominantly sarcomatoid 
and some biphasic

22% 40

Bap1;Nf2;Ink4a/Arf
(hom, hom, hom)

– Predominantly sarcomatoid 
and some biphasic,86 all 
subtypes87

85%86 1286, 16.387 86 87

NF2; Ink4b/Ink4a/Arf
(hom, hom)

– NA 75% 27.1 87

Bap1;NF2;Ink4b/Ink4a/Arf
(hom, hom, hom)

– NA NA 12.1

Bap1;NF2;Ink4b/Ink4a/Arf
(het, hom, hom)

– NA NA 20

Intrathoracic injection with 
Adeno- Cre virus

Pten;Tp53 – Sarcomatoid88 89 and 
biphasic88

56%88 19.388 88 89

Conditional mouse model 
exposed to asbestos

Intrapleural injection with 
Adeno- Cre virus and
intrapleural injection of 
asbestos

Nf2;p53;Ink4a/Arf – Predominantly epithelioid 
(>90%) and sarcomatoid

NA 21
(post- Cre- induction without 
asbestos) and
12 (post- Cre induction with 
asbestos)

85

Patient- derived xenograft Subcutaneous – 50 All subtypes – – 105

Subcutaneous – 4 Epithelioid – – 104

*The numbers indicate the total of pleural and pericardial mesothelioma.
†The numbers indicate thoracic tumours including MPM, rhabdomyosarcomas and schwannomas.
het, heterozygous; hom, homozygous; MPM, malignant pleural mesothelioma; NA, not available.
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response to drugs.75 Therefore, as cell lines adapt to 2D culture 
they lose many of the characteristics of the original tumour 
which can affect their use in research.

It has recently been demonstrated that cell lines represent 
only part of the subclonal diversity of primary tumours and 
that different subclones may be dominant in the mesothelioma 
tumours and derived cell lines.49 In line with this, some groups 
reported the development of two morphologically distant MPM 
cell lines obtained from the same patient, with differential 
expression of genes and chromosomal aberrations.56 65 There-
fore, cell lines fail to recapitulate the complete tumour heteroge-
neity found in patient tumours.

Early passage, primary MPM cell lines have been exploited 
in a number of transcriptomic analyses, supporting the identifi-
cation of putative diagnostic markers and treatment avenues. A 
recent transcriptomic analysis of a collection of primary MPM 
cultures, generated in the 1990s from patient samples obtained 
from French hospitals76 77 led to the identification of distinct 
molecular subgroups of MPM with divergent prognoses. The 
observed differences could be attributed largely to the varying 
mutation profiles between subtypes as well as divergent dereg-
ulated pathways, including epithelial to mesenchymal transition 
and transforming growth factor-β signalling.78 The molecular 
subtypes of MPM can also be predicted based on the differential 
expression of PPL, UPK3B and TFP1 genes.78 However, none 
of these studies has been translated to new diagnostic tools nor 
treatments for MPM.

Early passage MPM cell lines have also been used in drug 
sensitivity testing in a number of studies,58 75 79–81 demonstrating 
variability in drug response between individuals and indicates the 

importance of personalised medicine. Integration of drug sensi-
tivity testing of 81 short- term primary mesothelioma cell cultures 
with gene expression data revealed three response groups corre-
sponding to distinct gene signatures involving the FGF signalling 
pathway.79 High- throughput drug sensitivity testing of a panel of 
commercial and primary early passage mesothelioma cell lines 
identified a subgroup of MPM lines highly sensitive to FGFR 
inhibition as well as death receptor agonist tumour necrosis 
factor- related apoptosis- inducing ligand (TRAIL), associated 
with BAP1 loss.80 81 A phase Ib clinical trial of a FGF ligand 
trap in combination with pemetrexed/cisplatin chemotherapy 
appeared to show durable responses,82 but further validation is 
required before loss of BAP1 can be used as a biomarker for 
responsiveness to FGF/FGFR inhibitors or TRAIL.

Patient- derived mesothelioma cell lines therefore represent a 
simple model with which to study MPM biology and sensitivity 
to therapeutics. However, enthusiasm for their use in guiding 
personalised medicine must be tempered by important limita-
tions: (i) their proclivity to adapt to 2D culture conditions 
thereby changing their phenotype, (ii) their failure to recapit-
ulate tumour heterogeneity and (iii) the lack of immune and 
stromal cell interactions in culture conditions.

ANIMAL MODELS
Animal models offer the ability to capture some of the complexity 
of the in vivo tumour environment that is known to contribute 
to disease progression and drug responsiveness. One major issue 
of animal models is the time and cost associated with them and 
subsequently making them unsuitable for large- scale phenotypic 

Figure 1 Current and potential future three- dimensional (3D) models of malignant pleural mesothelioma (MPM). (A) Spheroids are obtained by 
culturing the cell lines or dissected primary tissues as small as 1 mm on a non- adherent or low- adherent plate. (B) Microfluidic chips are implemented 
to model MPM using cell line- derived spheroids or digested tumour tissue from patients. Arrows shows the medium flow. (C) Potential future 3D 
model of organoids is obtained using defined medium and a 3D matrix.
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screens. Yet, such models are essential for drug testing and 
have substantially contributed to our understanding of MPM.83 
Several groups have generated MPM animal models including 
genetically modified mice, asbestos- induced murine models as 
well as patient- derived xenografts (PDX) models (table 2).

Genetically engineered mouse models
MPM mouse models have been established through the alter-
ation of genes known to be involved in human MPM. Mice 
with mesothelial- specific deletion of Nf2, p53 and Ink4a/Arf 
were generated using intrathoracic injection of Adeno- Cre virus 
in homozygous and heterozygous conditional knockout (CKO) 
mice of Nf2;p53, Nf2;Ink4a/Arf and Nf2;p53 carrying an inac-
tive Ink4a allele (Nf2;p53;Ink4a*).84 Conditional Nf2;Ink4a/Arf 
mice demonstrated increased pleural invasion compared with 
conditional Nf2;p53 mice.84 Furthermore, homozygous CKO 
mice Nf2;p53;Ink4a* were highly malignant with invasion in 
75% of tumours in both parietal and visceral pleura and had 
the worst survival with a median survival of around 11 weeks 
compared with the other homozygous CKO mice (around 19 
and 31 weeks in Nf2;p53, Nf2;Ink4a/Arf, respectively). These 
indicate that Ink4a loss leads to a more aggressive phenotype 
and poor clinical outcome of MPM.84 Immunohistochemistry 
of the murine mesotheliomas identified the epithelioid MPM 
phenotype in the CKO mice Nf2;p53 and Nf2;Ink4a/Arf mice, 
but not in Nf2;p53;Ink4a* mice. Sarcomatoid phenotypes were 
found in all CKO mice.84 In this manner, by inactivating genes 
known to be mutated frequently in mesothelioma, a powerful 
model was generated that (i) yielded high incidence of sponta-
neous mesothelioma development and (ii) gave a short latency 
for tumour initiation. However, in humans with MPM, it is the 
epithelioid histological subtype that predominates, while most 
CKO mice developed sarcomatoid MPM. Only when CKO 
mice of Nf2;p53; Ink4a/Arf were exposed to asbestos using 
intrapleural injection, the tumours demonstrated predominantly 
epithelioid subtype.85 Furthermore, in contrast to the reported 
rarity of p53 mutations in human epithelioid MPM, CKO mice 
of Nf2;p53 developed epithelioid MPM. This might reflect 
species differences with respect to the impact of these genes or 
relate to different oncogenic mechanisms, such as the prolonged 
effects of asbestos fibres in human patients versus acute onset of 
somatic mutations in mice.84

Murine models have been generated by CKO in the pleura, 
of various combinations of the genes most frequently altered in 
human MPM: Bap1, Ink4a/Arf and Nf2.86 Homozygous dele-
tion of each individual gene led to few or no malignant meso-
theliomas of the pleura or peritoneum.86 Mesotheliomas were 
observed following homozygous co- deletion of Bap1;Nf2, 
Bap1;Ink4a/Arf and Nf2;Ink4a/Arf in 17%, 22% and 63% of 
mice, respectively, rising to 85% of mice in which all three genes 
were targeted.86 The partial penetrance of MPM in all allelic 
combinations suggests partial redundancy among these tumour 
suppressors and that additional events are required to drive the 
phenotype. The median survival of Nf2;Ink4a/Arf mice was 
reproducibly around 27–35 weeks in different studies84 86 87 
(table 2). The triple CKO mice had a shorter latency (12–16 
weeks) compared with double CKO mice (21–40 weeks).86 87 
Similarly, triple homozygous CKO Bap1;Nf2;Ink4b/Ink4a/Arf 
mice also have a short median survival of 12 weeks and display 
features similar to those of human MPMs including activation of 
the PI3K and MAPK pathways, substantial macrophage infiltra-
tion and the presence of a significant number of T cells, B cells 
and natural killer cells.87 RNA- sequencing revealed malignant 

mesotheliomas in the triple CKO mice compared with double 
CKO of Nf2;Ink4a/Arf were enriched in transcripts of genes 
controlled by polycomb repressive complex 2 (PRC2) including 
cancer- related genes.86 This argues that loss of BAP1, which 
forms part of a polycomb repressive deubiquitinase complex,27 
contributes to tumour progression by loss of PRC2- mediated 
repression of oncogenic genes.86 Consequently, these CKO mice 
are potential models to test therapeutics in these various genetic 
backgrounds. However, variability in the subtypes of tumours 
resulting from the same double and triple CKO mice in different 
studies may complicate interpretation of these results, with non- 
epithelioid subtypes in one study86 and all three histological 
subtypes in others84 87 (table 2).

Given that PI3K signalling pathway appears hyperactivated in 
many human MPMs, when it should normally be antagonised by 
PTEN, a mouse model was generated by inactivation of Pten and 
Tp53 in the mesothelium.88 Both peritoneal and pleural malig-
nant mesotheliomas developed in these double KO mice, while 
Pten inactivation alone was not sufficient for tumour develop-
ment.88 Most of the mesotheliomas were non- epithelioid, which 
is consistent with the low PTEN levels observed in human sarco-
matoid tumours and with the association of Tp53 mutations 
with non- epithelioid subtypes.88 89 This model was associated 
with MEK/ERK and PI3K activation and, accordingly, inhibition 
of MEK and PI3K using selumetinib and AZD8186 increased the 
survival of Pten;p53 mice.89 Although the Pten;p53 mice provide 
a relevant preclinical model for mesothelioma with sarcoma-
toid features, the common somatic genetic alterations found in 
human MPM are not recapitulated in this model.88

Asbestos/Asbestos-induced murine models
Malignant mesothelioma can also be induced through murine 
exposure to asbestos fibres. Peritoneal mesothelioma is even 
rarer than MPM, perhaps because less asbestos reaches the 
human peritoneum or this might reflect a different mode of 
pathogenesis entirely. However, most asbestos- induced murine 
models have been developed by intraperitoneal injection of 
asbestos and subsequent investigation of extracted mesothelial 
cells from malignant ascites that formed within the model.42 90–96 
One reason for this experimental approach is that asbestos 
exposure by inhalation, which is more physiologically relevant 
to how MPM develops in humans, results in low pleural tumour 
burden in murine models.93 Several studies demonstrated that 
inactivation of Bap1, Nf2, Ink4a/Arf and Tp53 led to a higher 
incidence and rapid progression of malignant mesothelioma in 
comparison to the wild- type mice treated with asbestos.42 90–94 97

Carbon nanotubes (CNT), which share some physical char-
acteristics with asbestos, are increasingly used in medical and 
commercial applications.98 Transtracheal intrapulmonary 
delivery of multiwalled CNTs in rats induces pleural and pericar-
dial mesothelioma in 16% of rats between 24 and 27 months.99 
Similarly, in wild- type mice injection of long fibre CNTs into 
the pleural cavities causes pleural mesothelioma in 10%–25% 
of animals compared with 9% of mice injected with asbestos.98 
Progression of murine mesothelioma lesions induced by CNT 
and asbestos were associated with increased cell proliferation 
and oxidative damage.98 In this model, hypermethylation of 
the Ink4a/Arf locus before tumour development caused loss of 
p19Arf (homologue to human p14ARF) and p16Ink4a protein and 
led to deletion of Arf in end stage mesothelioma, recapitulating 
an epigenetic feature of human MPM.98 The long latency of this 
model is both its strength and its main weakness. On one hand, 
it provides a valuable tool to study molecular events that occur 
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during the latency period, such as the hypermethylation causing 
loss of p19Arf, but equally the time required to develop tumours 
(up to 20 months), make it unsuitable for drug testing. In addi-
tion to these issues, the rat model has yet to be characterised 
extensively at a molecular level.

Graft models
Subcutaneous or intrathoracic injection of human MPM cell 
lines into mice are frequently used to study mesothelioma 
biology and treatment strategies.100–103 Highly passaged human 
mesothelioma cell lines lack many characteristics of their orig-
inal tumours and, importantly, generate little of the intratumour 
heterogeneity that is typical of the human disease. To date, there 
are few studies generating xenografts directly from human 
MPM tumour tissue or pleural fluid. In one study, subcutaneous 
xenografts were generated from early passage (below passage 5) 
primary mesothelioma cultures, derived from the pleural fluid 
of four patients with MPM and the ascitic fluid of one patient 
with peritoneal mesothelioma.104 A larger bank of xenograft 
models was established through subcutaneous implantation of 
fresh tumour material from 50 MPM patients with an engraft-
ment rate of 40% and were subsequently passaged up to five 
generations.105 These xenografts maintained the expression of 
markers of the primary cells including mesothelin, calretinin, 
WT- 1 and BAP1104 and the histological subtype of epithelioid 
and sarcomatoid in the original tissue.105 However, some of 
biphasic tumours gave rise to xenografts with either epithelioid 
or sarcomatoid histology only.105 While most sarcomatoid and 
biphasic samples formed xenografts, only one- third of epithe-
lioid samples engrafted successfully and interestingly they were 
from patients with a poorer outcome.105 This limits xenograft 
models largely to the study of more aggressive forms of MPM. 
Treatment of a subset of the models across different histolog-
ical subtypes with cisplatin inhibited growth of 7 of 10 tested 
PDXs; however, pemetrexed, either alone or in combination 
with cisplatin, did not affect the growth of these xenografts 
owing to the metabolism of folate by non- obese diabetic/severe 
combined immunodeficiency mice, which differs from that in 
humans.105 Furthermore, engrafting the tumour from pleural 
mesothelium into subcutaneous tissue profoundly changes the 
tumour microenvironment. Finally, although PDX models are 
a valuable tool to assess the response of patients to specific 
treatments, the lack of an immune system limits their utility for 
testing immunotherapies.

To evaluate immunotherapies for mesothelioma, syngeneic 
murine models can be used.106–109 In these models, murine 
cell lines are implanted into the immunocompetent host, for 
example, subcutaneous or intraperitoneal injection of murine 
mesothelioma cells including: AB1, AB12, AB22 cells in BALB/c 
mice; AE17 cells in C57BL/6J mice and F4- T2, F5- T1, M5- T1 
cells in F344 Fischer rats.106–114 Very few studies have used direct 
implantation of murine mesothelioma lines into the pleural space 
of mice.113 In addition, all these murine mesothelioma cell lines 
were in fact established from peritoneal mesothelioma following 
intraperitoneal injection of asbestos.107 112 115 While peritoneal 
and pleural mesothelioma might share some of the same biology, 
this has yet to be proved. In addition, similar to most available 
human MPM lines, murine mesothelioma cell lines suffer from 
having undergone clonal selection leading to adaptation to in 
vitro culture. Also, as with human cell lines, murine syngeneic 
tumour models fail to reproduce the intratumour and interpa-
tient heterogeneity seen in the clinic.

THREE-DIMENSIONAL MODELS
Spheroids
Several groups have cultured established mesothelioma cell 
lines or primary tumour tissue fragments in non- adherent or 
low- adherent conditions leading to the formation of 3D struc-
tures called cancer spheroids. These have been used to study 
the biology of mesothelioma and test drugs61 116–119 (figure 1A). 
Spheroid cultures recapitulate the resistance of mesothelioma 
cells to apoptosis more effectively than 2D cultures.116 120–123 
This may reflect the very different transcriptional profiles that 
2D versus spheroid culture conditions generate for the same 
lines.124 125 Indeed, genes involved in apoptosis are downregu-
lated in spheroids.124 Although 3D cultures are likely to be an 
improvement on classical 2D conditions, spheroids derived from 
cell lines will suffer many of the same limitations as 2D cultures, 
such as their lack of heterogeneity. By contrast, tumour- derived 
spheroids may overcome this and be maintained in culture for 
months. A single report of mesothelioma spheroids grown in 
vitro describes the retention of a proliferation rate similar to that 
of the original tumour for 4 weeks.119 Unfortunately, there are 
currently no long- term spheroid models that permit expansion 
of cell number, which limits the range and number of exper-
iments that can be conducted. Moreover, no studies have yet 
compared the genomic stability of MPM spheroids and their 
concordance with the original tumour.

Tumour on a chip
Microfluidic chips offer another method to model the 3D 
geometrical shape and the dynamic microenvironment by 
providing a perfused system mimicking a vascularised tumour.126 
These devices have been used to develop a 3D model of MPM 
using either tumour biopsies directly from patients or spheroids 
derived from cell lines126 127 (figure 1B). Although this system has 
demonstrated potential to predict clinical response to chemo-
therapy, applicability to long- term culture or indeed systematic 
drug screening are likely to be challenging.

OUTLOOK
There has been a disappointing lack of progress in the treat-
ments available for MPM patients and global incidence rates 
are set to increase. Many clinical trials have been conducted, 
often based on the results of experiments using simple preclin-
ical models, but they have not translated from model to patient. 
This suggests that the current preclinical MPM models are not 
recapitulating human physiology sufficiently well and/or we lack 
enough models to capture the diversity of the disease. High- 
quality preclinical models are essential for the development of 
new treatments for this lethal cancer. Cell lines, spheroids and 
animal models each have their individual strengths and limita-
tions, so no single model possesses every ideal feature. It is there-
fore essential that the choice of model is driven by the aim of a 
given study.

There has been great interest in the recent development of a 
3D cell model technology called organoids,128 which have over-
come many limitations of preclinical models. Organoids are grown 
in a 3D matrix such as basement membrane extract or Matrigel, 
enriched for laminins and collagens to resemble the basement 
membrane128 129 (figure 1C). Unlike spheroids, organoids can be 
propagated for long periods in culture using defined media128 
making them feasible to biobank and to be an accessible resource. 
There are now organoid derivation protocols for many epithe-
lial tissues and cancers including pancreas, colon, oesophagus, 
ovary, breast, prostate, endometrium, liver and lung.128–137 These 
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studies have demonstrated how these models can be generated 
at relatively high success rates (70% to >90%) and importantly 
recapitulate genomic alterations and histopathological features of 
the tumour of origin as well as a degree of the subclonal architec-
ture present in the tumour.128–137 They are amenable to a number 
of experimental techniques including medium- throughput drug 
sensitivity testing129 138 and importantly have been shown to reca-
pitulate patient responses to chemotherapy as well as other anti-
cancer agents in the setting of co- clinical trials or a prospective 
clinical study.139 140 Furthermore, methods have been developed 
that enable the successful co- culture of organoids with other cell 
types found in the tumour microenvironmant, such as immune 
and stromal cells, increasing the complexity of organoids culture to 
better recapitulate the tumour microenvironment.133 140–144 Large- 
scale efforts, such as Human Cancer Models Initiative, are now 
attempting to derive and characterise panels of cancer organoids 
that recapitulate the diversity of patient population and to make 
these models available to the community in order to identify new 
therapeutic strategies for a variety of cancer types. Unfortunately, 
to date organoid technology has not been applied to MPM. The 
development of MPM organoids to provide a strong tool with 
which to study MPM represents a significant hope for the future.
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