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ABSTRACT
Rationale Individual assessment of airway obstruction
in preschool-age children requires sensitive and specific
lung function methods with low demand of cooperation.
Although the forced oscillation technique (FOT) is
feasible in young children, conventional measurements of
respiratory impedance (Zrs) have limited diagnostic
power in individuals.
Objective To find descriptors of within-breath Zrs that
are sensitive indicators of airway obstruction during tidal
breathing in children.
Methods Zrs was measured with (i) a standard
multifrequency FOT (4–26 Hz) to assess the mean values
of resistance and reactance for whole breaths and (ii) a
10 Hz signal to track the within-breath changes. Various
Zrs measures obtained in healthy children (n=75) and
those with acute wheeze (n=31) were investigated with
receiver operator characteristic (ROC) analysis. The cut-off
values obtained for airway obstruction were then tested
in children with recurrent wheeze (n=20) before and
after administration of salbutamol.
Results The largest area under the ROC curve (0.95)
was observed for the tidal changes of resistance
between the zero-flow values (ΔR). The ΔR cut-off value
of 1.42 hPa s/L detected airway obstruction with
sensitivity of 92% and specificity of 89% in children
with acute wheeze and distinguished children with
recurrent wheeze (16/20 above the cut-off value) from
healthy children (22/23 below the cut-off value).
Furthermore, ΔR significantly decreased after salbutamol
in wheezy children but remained unchanged in healthy
children.
Conclusions New lung function measure ΔR is able to
detect airway obstruction with high sensitivity and
specificity and is suitable for use in lung function testing
in young children.

INTRODUCTION
Detection of acute pulmonary dysfunction in young
children remains a challenge for physicians as there
is no lung function method available in the routine
clinical care that can be performed easily and reli-
ably in sick young children.1–3 This is particularly
important considering that more than half the chil-
dren hospitalised for wheeze or asthma exacerbation
are below 6 years of age.4 Spirometry, the ‘gold
standard’ lung function test, has many limitations in
preschool-age children, especially when they are
unwell. In addition to the high cooperation required

for the respiratory manoeuvres, the technique is not
applied consistently in children below 6 years of
age, as different outcome measures and cut-off
points have been suggested for the assessment of
airway obstruction.1 3 5–7 Alternative lung function
methods have been developed in recent decades to
overcome these problems; however, these techni-
ques are more frequently employed in research
studies assessing differences in lung function
between healthy and diseased study groups, and are
not routinely used in clinical practice.1 3 Objective
measurements of lung function validated for detect-
ing abnormalities in individual young children
would present a significant advance.
The forced oscillation technique (FOT) has been

employed widely in paediatric lung function testing
due to its non-invasive nature and the lack of
special breathing manoeuvres required from the
subject. Several reports have addressed the utility of
the FOT in paediatrics,1 3 8 9 and normative data
are available;10–13 however, FOT methodology and
data interpretation differ between commercial
devices.1 In addition, current opinion suggests that
FOT is more useful for showing differences
between groups rather than following disease in
individuals.1 3 This may, in part be due to the
large variance of normal data in preschool-age
children.10–13

Key messages

What is the key question?
▸ Can airway obstruction be detected in

individual preschool-aged children with
wheeze?

What is the bottom line?
▸ Unlike previous lung function techniques that

are able to detect differences between groups
of children our novel method detects airway
obstruction in individual children with
sensitivity of 92% and specificity of 89%.

Why read on?
▸ Measuring the volume dependence of

resistance during tidal breathing using a
modification of the forced oscillation technique
has the potential to change the way asthma
and other respiratory diseases are assessed in
young children.
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Respiratory impedance (Zrs) is commonly determined at mul-
tiple oscillation frequencies and averaged over several
breaths8 14 15 with the tacit assumption of linearity, that is, that
the mechanical properties of the respiratory system do not
change during quiet breathing. However, there is strong evi-
dence that non-linear phenomena (flow and volume dependence
of impedance) result in marked within-breath changes in respira-
tory resistance (R).16–19 Although the effect of the upper
airways on R has not been fully established, previous research
on the upper airway and vocal cord physiology demonstrated
that the area of the glottic aperture achieved a minimum value
in midexpiration and thus elevates the mean R during expir-
ation. This effect was greater in the presence of airway obstruc-
tion.20 21 An important message from these studies was that the
effects of flow and the geometry of the upper airways on R
were significant in both health and disease, even during quiet
breathing, and that the mean R values from total breaths or
from whole inspiratory and expiratory phases separately are fun-
damentally dependent on the flow pattern.

The present study aimed to examine within-breath changes in
Zrs, in order to determine R in phases of the breathing cycle
that are the least affected by the breathing pattern (ie, airflow)
and the rheology of the upper airways. We hypothesised that
the change in R with tidal volume (measured between the zero-
flow points at end-expiration and end-inspiration) would be a
sensitive indicator of airway calibre and hence the airway
obstruction during tidal breathing in wheezy preschool-age
children.

METHODS
Subjects and study procedures
Children with acute wheeze (study I)
Preschool-age children admitted with acute wheeze to the
Emergency Department of the Royal Children’s Hospital,
Brisbane, Australia were enrolled in the study between June
2014 and August 2015. The relevant clinical information is
shown in table 1. Children were eligible to participate if they
(1) had detectable wheeze on auscultation; (2) needed treatment
with short-acting β2 receptor agonist (SABA) and (3) did not
require supplemental oxygen by the time of the lung function
measurement. Lung function from children who had SABA 1 h

prior to the study visit was excluded from the analysis. Parents
completed a modified International Study of Asthma and
Allergies in Childhood (ISAAC) questionnaire (see online sup-
plementary appendix) for their child, and lung function was
then measured. Another group of children (n=75) was recruited
from local kindergartens as healthy controls. The consent form
and a questionnaire regarding the respiratory status of their
child were mailed to the parents and the forms were collected
on the day of the visit. Children were defined as healthy based
on the following criteria assessed in the questionnaire: (1) ≥37
completed weeks of gestation, (2) no prior diagnosis of asthma
or other respiratory disease or known growth defects and (3)
asymptomatic at least for 4 weeks prior to testing.

Children with recurrent wheeze (study II)
Children with stable wheeze or asthma (ie, more than three
wheezy episodes after the first year of life and/or doctor diagno-
sis of asthma, table 1; symptom-free for at least 4 weeks prior to
the study visit, n=20) were recruited from Asthma Clinics at the
Royal Children’s Hospital, Brisbane between April and
November 2015. Informed consent was obtained and lung func-
tion measured before and after the administration of 400 mg
inhaled salbutamol (Ventolin, GlaxoSmithKline, Ermington,
New South Wales, Australia) via a spacer (Aerochamber, Trudell
Medical International, London, Ontario, Canada).
Bronchodilator response was also assessed in a subgroup of the
healthy children (n=23).

Both studies were approved by the Children’s Health Services
Human Research Ethics Committee, Brisbane, Australia.

Impedance measurements
Custom-made FOT equipment, consisting of a loudspeaker and
a wave tube was used to measure Zrs.22 A pneumotachograph
was employed to record changes in flow and volume during
tidal breathing (figure 1). Two types of FOT measurements were
performed in each subject during tidal breathing. First, Zrs was
measured with a multiple-frequency pseudorandom signal
between 4 and 26 Hz for 16 s; these measurements were
repeated until three reproducible Zrs spectra were obtained and
these spectra were ensemble averaged. Second, the within-breath
changes in Zrs were tracked with a single 10 Hz sinusoid, and
all regular breathing periods from three recordings were selected
for analysis. Details of the Zrs measurements are given in the
online supplementary appendix.

Data analysis
Mean values of R and X at each measured frequency were
determined from the averaged Zrs spectra and those at 6, 8 and

Table 1 Clinical symptoms and treatment of wheezy children from
studies I and II

Clinical symptoms
Acute wheeze
(n=26)

Recurrent wheeze
(n=20)

Doctor diagnosis of asthma 9 7
≥1 hospital admission* 12 6
No wheezy episode* 2 2
1–3 wheezy episodes* 14 11
4–12 wheezy episodes* 7 7
>12 wheezy episodes* 3 0
Medication†
Daily treatment with ICS (±LTRA) 8 4
Daily treatment with LTRA only 0 3
SABA only (pro re nata) 13 4
No treatment 5 9

*In the 12 months prior to the study visit.
†Medication use prior to the study visit.
ICS, inhaled corticosteroids; LTRA, leukotriene receptor antagonist; SABA, short-acting
β2-agonist.

Figure 1 Forced oscillation technique device. P1 and P2 are two
identical pressure transducers to measure the inlet and outlet pressures
of the wave tube.
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10 Hz (R6, R8, R10, X6, X8 and X10) are reported. From the
temporal recordings, R and X were obtained at every 0.1 s from
all the artefact-free breathing cycles and their values were calcu-
lated at specific time points (figure 2 and table 2). The temporal
variables are summarised in table 2. Tidal volume (VT), tidal
inspiratory (V0

maxI) and expiratory flows (V0
maxE), breathing fre-

quency (Fbr) and the expiratory time relative to the total breath-
ing period (TE/Ttot) were obtained from the tidal flow signal.

Statistical analysis
Summary statistics for continuous variables are presented as
either mean±SD or median (25% percentile; 75% percentile) as
appropriate. The differences in Zrs and tidal breathing variables
between the groups in study I were assessed with the Wilcoxon
rank sum tests. A p value of <0.05 was considered statistically
significant. The sensitivity and specificity, negative and positive
predicted values (NPV and PPV, respectively) and likelihood
ratios of the variables to detect airway obstruction were deter-
mined using receiver operator characteristic (ROC) analysis.
Cut-off value for each of the variables was defined as the best
relationship between sensitivity and specificity. The effect of sal-
butamol was analysed using the two-way repeated measures of
analysis of variance.

RESULTS
Children with acute wheeze (study I)
Three obstructed children who received SABA <1 h prior to the
FOT measurements were excluded from the analysis while two
children were not able to perform lung function testing
(figure 3). The demographic characteristics of the children in
the two groups are summarised in table 3.

Respiratory function
Zrs data collected with the pseudorandom signal are shown in
figure 4. The conventional FOT variables (R6, R8, R10, X6, X8

and X10) did not differ between the two groups (p=0.54, 0.88,
0.60, 0.72, 0.16 and 0.37, respectively). The expiration was
proportionally longer and V0

maxE was reduced in children with
acute airway obstruction (table 3); however, minute ventilation
was similar in the two groups (p=0.42). The mean values of R
during inspiration (RmeanI) and expiration (RmeanE) did not dis-
tinguish between the two groups whereas the inspiratory and
expiratory mean reactance (XmeanI and XmeanE, respectively)
were significantly lower in children with acute airway obstruc-
tion. The differences between the corresponding inspiratory and
expiratory mean values (ΔRmean and ΔXmean) did not differ
between the groups (table 4).

The changes in the group mean values of R and X during
tidal breathing are illustrated in figure 5. At the end of expir-
ation, R was significantly higher in children with acute airway
obstruction compared with healthy subjects (p<0.001) and
remained elevated at V0

maxI (p=0.007). By the end of inspir-
ation, R decreased, with the difference in R between the groups
disappearing (p=0.51). The onset of expiratory flow resulted in
a fast rise in R in both groups; however, in children with acute
airway obstruction R was higher (p=0.02) and remained ele-
vated at the end of expiration. The changes in X during tidal
breathing mirrored the changes in R, with statistically significant
differences between the two groups at end-expiration
(p<0.001), at V0

maxI (p<0.001) and V0
maxE (p=0.005).

The most significant differences between the two groups were
the changes in R and X between the beginning and the end of
inspiration, as illustrated by typical R and X versus volume and
flow loops in figure 6. Children with acute airway obstruction
exhibited a significantly increased difference in R between
end-expiration and end-inspiration (ΔR, figure 6B) compared
with healthy children (figure 6A; 2.42±1.31 vs 0.61
±0.66 hPa s/L, p<0.001), and this difference remained
unchanged when ΔR was corrected for VT (7.73±5.83 vs 1.87
±2.63 hPa s/L2, p<0.001). Furthermore, ΔR exhibited no rela-
tionship with the height-corrected tidal volume (cVT; r

2=0.02,
p=0.25) while both ReE and ReI were negatively related to cVT

(r2=0.06 and r2=0.42, respectively, both p<0.001). There was
a weak (although statistically significant) relationship between
TE/Ttot and ΔR (r2=0.06, p=0.013); however, when height was
included as a covariable in the regression, the significance disap-
peared (p=0.055). We note here that there was no relationship
between VT, TE/Ttot and the conventional measures of respira-
tory resistance and reactance, that is, mean R and X at different
frequencies (data not shown). The tidal change in X (ΔX) was
similar in magnitude in the two groups but opposite in sign
(0.29±1.08 vs −0.40±0.54 hPa s/L, p<0.001).

Figure 2 Tidal changes in resistance (R) and reactance (X) with the
flow and volume traces. Dashed lines indicate time points of
end-expiration (eE), end-inspiration (eI), maximum inspiratory flow
(V0maxI) and maximum expiratory flow (V0maxE).

Table 2 Definitions of the within-breath impedance measures
obtained from the 10 Hz recordings

Phases of the breathing cycle Resistance (R) Reactance (X)

Whole expiration (meanE) RmeanE XmeanE
Whole inspiration (meanI) RmeanI XmeanI
Difference between meanE and meanI ΔRmean ΔXmean
End-expiration (eE) ReE XeE
End-inspiration (eI) ReI XeI
Difference between eE and eI ΔR ΔX

Maximum expiratory flow (maxE) RV0maxE XV0maxE
Maximum inspiratory flow (maxI) RV0maxI XV0maxI
Area within the resistance versus flow loops ARV0 –
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Diagnostic value of impedance measures for detecting airway
obstruction
The ROC curves for RmeanE, RmeanI, XmeanE, XmeanI, ΔR and ΔX
are presented in figure 7. The largest area under the curve
(AUC) was observed for ΔR (0.95) and ΔX (0.79), correspond-
ing to higher values of sensitivity and specificity to detect
airway obstruction than that of the mean inspiratory or mean
expiratory Zrs variables (RmeanE: 0.60; RmeanI: 0.60; XmeanE:
0.65 and XmeanI: 0.70; all p<0.0001 vs ΔR). Optimal detection
of airway obstruction was established with a ΔR of ≥1.42 hPa
s/L, which corresponded to a sensitivity of 95% (75–99) and a
specificity of 89% (80–95) with NPV and PPV of 97% (90–99)

and 75 (57–89), respectively, calculated for the prevalence of
wheeze in the study population (25.7%; 26/101 children). This
prevalence is comparable with the expected proportion of
preschool-age children with recurrent wheeze who go on to
develop persistent asthma (30%). The cut-off values for poten-
tial outcome measures with values of sensitivity and specificity,
NPV, PPV, positive and negative likelihood ratios are shown in
the online supplementary appendix.

Figure 3 Flow chart of participants in study I. FOT, forced oscillation technique; ROC, receiver operator characteristic.

Table 3 Anthropometric and tidal breathing data of children
(study I)

Healthy (n=75) Acute wheeze (n=26) p Value

Age (year) 4.8 (4.3; 5.2) 4.8 (3.9; 6.0) 0.93
Height (cm) 108.3 (105.9; 116.9) 110.6 (102.1; 118.5) 0.24
Weight (kg) 19.0 (16.2; 21.1) 20.7 (17.7; 23.6) 0.46
Tidal volume (mL) 289 (232; 378) 337 (270; 428) 0.15
Fbr (breath/min) 28 (23; 32) 26 (22; 34) 0.30
TE/Ttot 0.54 (0.52; 0.57) 0.57 (0.55; 0.59) 0.002*
V0maxE/V0maxI 0.88 (0.81; 0.97) 0.81 (0.72; 0.92) 0.014*

Data are presented as median (25th percentile; 75th percentile).
*Statistically significant difference.
Fbr, breathing frequency; TE, time of expiration; Ttot, total time of a breathing cycle;
V0maxE, maximum expiratory flow; VmaxI, maximum inspiratory flow.

Figure 4 Impedance (Zrs) spectra between 6 and 26 Hz obtained in
children with acute wheeze (open circles) and that in healthy subjects
(closed circles). Bars represent SD.
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Children with recurrent wheeze (study II)
Bronchodilator response
Baseline lung function was measured in 20 children with recur-
rent wheeze (age: 4.04±0.55 year, height: 101.3±7.4 cm) and
23 healthy children (age: 4.29±0.51 year, height: 99.6
±5.3 cm). Three wheezy children were not able to repeat the
lung function test after administration of salbutamol.
Bronchodilator response in Zrs measured with the multiple-
frequency signal is illustrated in figure 8. There was no signifi-
cant difference between the groups either at baseline or in their
responses to salbutamol. Despite the lack of differences in the
conventional FOT variables, ΔR and RmeanI were significantly
increased at baseline in the wheezy children compared with the
healthy children (table 5). Sixteen of the 20 wheezy children
had a baseline ΔR higher than the cut-off value defined for
airway obstruction in study I, while ΔR was below the cut-off in
96% of the healthy children (22 out of the 23). The difference
in ΔR between the groups disappeared after the administration
of salbutamol (figure 9, p=0.38).

DISCUSSION
The results from the present study demonstrate that the change
of respiratory resistance during normal breathing is a highly spe-
cific and sensitive measure of airway obstruction in young chil-
dren, whereas the conventional averaged estimates of respiratory
resistance fail to discriminate between the wheezing and healthy
preschool-age children. Together with the known feasibility of
the FOT in young children and the achievable high success rate
the extension of this technique to the within-breath analysis of
respiratory mechanics has the potential to reveal physiologically
and clinically important alterations in airway function.

Respiratory resistance is assumed to reflect airway calibre;
therefore, FOT measurements have been employed widely in
paediatric studies in various groups of patients with respiratory
disease.23–28 While some of these studies suggested that, simi-
larly to other methods, such as spirometry5 7 and multiple
breath washout29 30 the FOT was able to distinguish between
healthy and diseased subject groups,25 28 31–33 others raised con-
cerns about the diagnostic value of the Zrs data, especially in
young children.23 24 26 27 34 The controversies surrounding the
FOT arise from the diversity of Zrs measures reported from the
various studies and also from the wide range of the normal
values in the paediatric population for any given age or
height.10–13 The large variability of the Zrs in healthy
preschool-age children can be explained, in part, by the unstable
end-expiratory lung volume level and the variable breathing pat-
terns adopted by young children.35 In agreement with the body
of the literature we did not find a difference between healthy
and wheezy children when using conventional mean values of
Zrs measures from whole breathing cycles or considering only
the inspiratory phase as proposed recently.19 32 36

Previous investigations suggested that R measured during
spontaneous breathing reflects the overall airway calibre and is
also determined by the airflow through the upper airways and
larger conducting airways.37 In agreement with earlier find-
ings,16–19 our within-breath Zrs data demonstrated that R
increases with expiratory flow reaching its peak at the maximum
flow that can be related to the vocal cord movements during
tidal breathing (ie, during expiration, the glottic aperture
narrows and reaches its smallest diameter at midexpiration).20 21

It is important to note that, the glottic aperture resumes its ori-
ginal area at the end of expiration in healthy adults. Since there
are no data available on vocal cord movements in airway
obstruction in children, we cannot exclude the possibility that,
contrary to the findings in adults,20 21 the relatively narrow
glottic aperture during expiration does not completely return to
its original size by the time inspiration begins, possibly affecting
R at the end-expiration, and hence ΔR. Although further investi-
gations are required to localise the airway obstruction (ie, intra-
pulmonary vs extrapulmonary), our data suggest that
independently of the exact location, ΔR is a sensitive and spe-
cific indicator of the airway obstruction in young children.
These findings support our hypothesis that by the identification
of the zero-flow resistance points we can minimise the effect of
the non-linear, flow-dependent behaviour of the upper airways
on R.

Although flow dependence of R is also significant in inspir-
ation, the mean values of the inspiratory R have been suggested
as a surrogate measure of airway resistance.16 In the present
study, the diagnostic value of RmeanI was weak, which suggests
that flow-dependent contributions to R during inspiration did
not differ between groups. The flow dependence of R, present
in both inspiratory and expiratory phases, is primarily related to

Table 4 Impedance measures calculated for expiration (RmeanE,
XmeanE) and inspiration (RmeanI, XmeanI) and their differences
(ΔRmean, ΔXmean) in the two groups of children (study I)

Impedance
measures
(hPa s/L) Healthy (n=75)

Acute wheeze
(n=26) p Value

RmeanE 8.63 (7.48; 10.13) 9.23 (7.82; 10.90) 0.12
RmeanI 7.74 (6.73; 8.66) 8.26 (7.17; 9.25) 0.14
ΔRmean 0.97 (0.60; 1.41) 1.14 (0.36; 1.83) 0.30
XmeanE −1.83 (−2.96; −1.16) −2.70 (−4.17; −1.70) 0.026*
XmeanI −1.75 (−2.41; −1.01) −2.22 (−3.24; −1.81) 0.014*
ΔXmean −0.19 (−0.50; 0.29) 0.05 (−0.67; 0.29) 0.66

Data are presented as median (25th percentile; 75th percentile).
*Statistically significant difference.

Figure 5 Mean values of resistance (R, top) and reactance
(X, bottom) in children with (open circles) and without acute airway
obstruction (closed circles) at the end of expiration (eE), maximum
inspiratory flow (maxI), end of inspiration (eI) and maximum expiratory
flow (maxE). Bars represent SEM values; *statistically significant
difference between groups.
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the breathing pattern and not to the degree of obstruction, and
this may exert a masking effect on the assessment of airway
calibre. This finding may explain why the average R obtained
with the conventional FOT is poor in separating normal and
diseased subject groups. Indeed, significant improvements in
sensitivity and specificity were attained in the present study
when the influence of flow on R was eliminated by examining
the change in R between the zero-flow, that is, end-inspiratory

and end-expiratory points (ΔR). The diagnostic power of ΔR
reported in the present study is much greater than that of any
lung function index, including that of the FOT, reported previ-
ously in the preschool-age group.27 33

The mechanisms by which ΔR differs between healthy chil-
dren and those with acute airway obstruction are likely to be
complex, and their clarification needs further investigation.
Nevertheless, the fact that the difference in R at end-expiration
between the two groups diminishes during inspiration suggests
that the airways of children with acute obstruction demonstrate
an increased baseline constrictor tone before inspiration begins
(ie, at functional residual capacity) that is reduced by a normal
tidal expansion of the lungs but then re-established during
expiration. This finding is consistent with the observation in
precision-cut human lung slices where the acetylcholine-induced
smooth muscle constriction of the individual intraparenchymal
airways was reversed with the tidal expansion.38 It is also pos-
sible that inhomogeneity in the resistance of the distal airways at
end-expiration is higher in children with obstruction; this is
indicated by both a higher R and an increase in apparent elasti-
city of the lungs39 40 as reflected by the more negative X values
that also return to a normal level at end-inspiration. The
inhomogeneity of peripheral resistance might reach the degree
of cyclic closure and reopening of some peripheral lung units,
which would also be consistent with the observed changes in R
and X. The coupling of the resistive and elastic parameters
during the breathing cycle is also supported by the second
highest value of the AUC (0.79) observed in the ROC analysis
for ΔX.

Analysis of R as a bilinear function of flow and volume has
proved useful in characterising the volume dependence before
and after methacholine provocation18 37 and subsequent
bronchodilatation in children with a history of cough or
asthma.19 In the present study, expiratory flow limitation was
present (and the ratio V0

maxE/V0
maxI reduced) in acute airway

obstruction compared with that in healthy children.
However, detailed analysis of our data suggests that changes
in R with tidal volume are more specific for airway obstruc-
tion than the changes in the flow profile (data are not
shown). On the basis of the cut-off value of ΔR established in

Figure 6 Tidal changes with volume (A and B) and flow (D and C) in
resistance (R, top) and reactance (X, bottom) during inspiration (open
circles) and expiration (closed circles) in a healthy subject (A and C)
and in a child with acute airway obstruction (B and D).

Figure 7 Receiver operator characteristic curves for within-breath resistance (A) and reactance measures (B). The open squares represent the
difference between the end-expiratory and end-inspiratory resistance (ΔR) or reactance (ΔX) values; open circles and triangles indicate the mean
values of the resistance and reactance in expiration (RmeanE, XmeanE) and inspiration (RmeanI, XmeanI), respectively.
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children with acute airway obstruction, 80% of the children
with recurrent wheeze were identified as having airway
obstruction in our test population and 96% of the healthy
children were properly classified as not having airway
obstruction before the administration of salbutamol.
Furthermore, all variables we studied changed in both groups
significantly and uniformly in response to salbutamol,
whereas ΔR only decreased in asthmatics and was thus able to
differentiate between the groups. This finding suggests that
although these children with well controlled stable asthma
exhibit conventional lung function measures apparently very
similar to that of the healthy children (this may partly be due
to the relatively low contribution of the small airways to the
total resistance of the respiratory system), a sensitive tech-
nique is able to reveal the alterations in their airway function.
Further investigations are needed to establish whether the
lack of a high ΔR and response to salbutamol in some of our
wheezy children reflects a well controlled and/or early stage
of disease without ongoing inflammation and airway remodel-
ling, or it is associated with structural alterations of the

airway wall that result in a decreased airway distensibility
which cannot be eliminated by the administration of bron-
chodilator agonist.

Since the influences of height and age on ΔR and ΔX were
not significant in the present study, the cut-off values estab-
lished for children between 3 and 7 years of age can be
applied safely to other populations of young children with
similar demographics. However, it is important to note that
the potential of ΔR as a descriptor of airway dynamics in chil-
dren with paediatric respiratory conditions other than asthma,
such as those associated with peripheral abnormalities (cystic
fibrosis and interstitial lung disease) needs to be further inves-
tigated. Additionally, although the primary aim of this study
was the comparison of the within-breath approach with con-
ventional FOT, assessment of agreement with other techniques
commonly employed in the preschool age (multiple breath
washout, forced spirometry) would be informative. We never-
theless think that the present results document a methodo-
logical advance worthy of further investigation in larger and
longitudinal studies.

Figure 8 Respiratory impedance (Zrs) between 6 and 26 Hz in healthy (A) and children with recurrent wheeze (B) before (closed circles) and after
administration of salbutamol (open circles). Bars represent SD.

Table 5 Resistance (R) and reactance (X) measures calculated at 6 Hz (R6 and X6), separately for expiration (RmeanE and XmeanE), inspiration
(RmeanI and XmeanI) and the volume dependence (ΔR and ΔX) in two groups of children presalbutamol and postsalbutamol (study II)

Healthy (n=23) Recurrent wheeze (n=17)

Lung function variables Pre Post p Value* Pre Post p Value* p Value†

Tidal volume (mL) 244±193 220±183 0.29 211±156 209±144 0.12 0.151
Fbr (breath/min) 27±4 26±4 0.41 25±5 26±4 0.25 0.331
TE/Ttot 0.54±0.04 0.55±0.05 0.19 0.58±0.04 0.56±0.04 0.14 0.186
R6 (hPa s/L) 9.61±1.74 7.95±1.56 <0.001‡ 9.83±2.41 7.57±1.58 <0.001‡ 0.398
RmeanE (hPa s/L) 9.25±1.28 7.96±1.84 <0.001‡ 9.27±2.53 6.79±1.23 <0.001‡ 0.054
RmeanI (hPa s/L) 8.32±1.02 7.06±1.78 <0.001‡ 8.56±2.00 6.00±1.06 <0.001‡ 0.023‡
X6 (hPa s/L) −3.16±0.93 −2.61±1.01 <0.001‡ −3.65±1.72 −2.38±1.02 <0.001‡ 0.107
XmeanE (hPa s/L) −2.27±1.14 −1.36±0.91 <0.001‡ −2.28±1.57 −0.95±0.91 <0.001‡ 0.237
XmeanI (hPa s/L) −2.08±0.88 −1.16±0.73 <0.001‡ −2.21±1.08 −0.91±0.61 <0.001‡ 0.178
ΔR (hPa s/L) 0.67±0.58 0.26±0.82 0.065 2.00±1.21 0.52±0.46 <0.001‡ <0.001‡
ΔX (hPa s/L) −0.36±0.51 −0.69±0.38 0.002‡ −0.08±1.02 −0.65±0.51 0.02‡ 0.089

Data are presented as mean±SD.
*p Value versus presalbutamol.
†p Value versus healthy.
‡Significant difference.
Fbr, breathing frequency; Te, time of expiration; Ttot, total time of a breathing cycle.
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In conclusion, the assessment of the tidal and
flow-independent changes in forced oscillatory resistance in
the present study has resulted in a significant improvement in
the sensitivity and specificity attained previously with the
FOT and other lung function tests in the differentiation
between healthy preschool-age children and those with acute
bronchial obstruction. The cut-off value of ΔR used in a test
population properly separated wheezy and healthy children.
Our results demonstrate the potential of the within-breath
approach of the FOT in the assessment of lung disease in
individual patients.
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