Mean pre- and post-challenge values were analysed with a paired *t* test. Analyses were performed using SPSS version 15.0 (Chicago, Illinois, USA).

The mean age of the patients was 38. 5 years. Thirty-eight patients had a methacholine PC_{20} <8 mg/ml. The mean fall in FEV₁ was 21%. Geometric mean pre-challenge FE_{NO} was 20.4 ppb compared with 16.9 ppb post-challenge, a difference of 17% (95% CI 13% to 21%, p<0.001; fig 1). Geometric mean CA_{NO} was 2.9 ppb pre-challenge and 1.9 ppb post-challenge, a difference of 31% (95% CI 17% to 43%, p<0.001). Differences in NO at flow rates of 50, 100 and 200 ml were 15% (95% CI 10% to 19%), 11% (95% CI 6% to 16%) and 17% (95% CI 11% to 22%), respectively (p<0.001). Baseline values for FE_{NO} and CA_{NO} showed no correlation with methacholine PC20, baseline FEV1 or final percentage fall in FEV₁. The percentage change in CA_{NO} following challenge showed a positive correlation with the baseline value (r = 0.59, p < 0.001).

To our knowledge, this is the first study to report the effects of methacholine challenge on CA_{NO} . We have shown that methacholine challenge significantly reduces CA_{NO}, and this effect is relatively more marked than for FE_{NO} . The effect on FE_{NO} is known, and is thought to be due to washout of nitric oxide from the airways. There was a proportionally greater suppression of FE_{NO} at 200 ml (17%) than at 50 ml (15%) and 100 ml (11%). This has a more significant effect on the slope of the regression line and hence the CA_{NO} is relatively more suppressed than FE_{NO}. This is an important consideration for planning and interpreting study visits in clinical trials.

P A Williamson, K Clearie, S Vaidyanathan, B Lipworth

Asthma and Allergy Research Group, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK

Correspondence to: Dr P A Williamson, Asthma and Allergy Research Group, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK; p.a.williamson@dundee.ac.uk

Competing interests: None.

Accepted 4 February 2009

Thorax 2009:64:549-550, doi:10.1136/thx.2009.113548

REFERENCES

- ATS/ERS. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med 2005:171:912–30.
- Silkoff PE, Erzurum SC, Lundberg JO, et al. ATS workshop proceedings: exhaled nitric oxide and nitric oxide oxidative metabolism in exhaled breath condensate. Proc Am Thorac Soc 2006;3:131–45.

 Tsoukias NM, Shin HW, Wilson AF, et al. A singlebreath technique with variable flow rate to characterize nitric oxide exchange dynamics in the lungs. J Appl Physiol 2001;91:477–87.

CORRECTION

doi:10.1136/thx.2008.102970corr1

M-C Breton, M-F Beauchesne, C Lemière, *et al.* Risk of perinatal mortality associated with asthma during pregnancy. *Thorax* 2009;**64**:101–6. The values for parity 1 and parity ≥ 2 in table 2 were transposed. The correct table is printed below.

Table 2 Crude and adjusted odds ratios (ORs) of perinatal mortality in women with and without asthma for the complete and final model (n = 41 142)

			Adjusted OR for
	Crude OR (95% CI)	Adjusted OR for all covariates (95% CI)	confounders only (95% CI)
Asthma yes/no	1.35 (1.08 to 1.67)	0.95 (0.74 to 1.22)	0.93 (0.75 to 1.17)
Age			
<18	1.19 (0.73 to 1.91)	0.91 (0.49 to 1.69)	†
18–34	Reference (-)	Reference (-)	
≥35	1.59 (1.16 to 2.18)	1.40 (0.97 to 2.01)	
Social assistance yes/no	1.32 (1.05 to 1.67)	0.80 (0.60 to 1.06)	†
Level of education			
≤11	1.25 (0.98 to 1.59)	0.95 (0.72 to 1.26)	†
≥12	Reference (-)	Reference (-)	-
Missing	4.49 (3.39 to 5.95)	2.44 (1.73 to 3.45)	
Parity			
1	Reference (-)	Reference	†
≥2	1.13 (0.89 to 1.43)	1.12 (0.86 to 1.47)	
PIH yes/no	1.24 (0.82 to 1.89)	0.53 (0.32 to 0.87)	†
Diabetes mellitus yes/no	1.97 (1.07 to 3.60)	1.58 (0.79 to 3.18)	†
Gestational diabetes yes/no	0.80 (0.51 to 1.26)	0.72 (0.43 to 1.21)	†
Placental abruption yes/no	7.33 (5.59 to 9.62)	1.75 (1.28 to 2.40)	†
Infection of amniotic cavity yes/no	3.74 (2.80 to 4.99)	1.92 (1.37 to 2.68)	†
Cord around neck yes/no	0.74 (0.55 to 1.01)	0.86 (0.61 to 1.21)	†
Birth weight \leq 2500/ $>$ 2500 g	34.75 (27.58 to 43.79)	10.55 (7.40 to 15.15)	9.11 (6.61 to 15.55)
Gestational age at birth $<$ 37/ \geqslant 37 weeks	30.62 (24.27 to 38.63)	6.24 (4.37 to 8.90)	7.07 (5.12 to 9.77)

[†]Not a confounder variable.

550 Thorax June 2009 Vol 64 No 6

PIH, pregnancy-induced hypertension.