Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease =============================================================================================== * C Koechlin * F Maltais * D Saey * A Michaud * P LeBlanc * M Hayot * C Préfaut ## Abstract **Background:** Because oxidative stress affects muscle function, the underlying mechanism to explain exercise induced peripheral muscle oxidative stress in patients with chronic obstructive pulmonary disease (COPD) is clinically relevant. This study investigated whether chronic hypoxaemia in COPD worsens peripheral muscle oxidative stress and whether an abnormal muscle inflammatory process is associated with it. **Methods:** Nine chronically hypoxaemic and nine non-hypoxaemic patients performed repeated knee extensions until exhaustion. Biopsy specimens were taken from the vastus lateralis muscle before and 48 hours after exercise. Muscle oxidative stress was evaluated by lipid peroxidation (lipofuscin and thiobarbituric acid reactive substances (TBARs)) and oxidised proteins. Inflammation was evaluated by quantifying muscle neutrophil and tumour necrosis factor (TNF)-α levels. **Results:** When both groups were taken together, arterial oxygen pressure was positively correlated with quadriceps endurance time (n = 18, *r* = 0.57; p<0.05). At rest, quadriceps lipofuscin inclusions were significantly greater in hypoxaemic patients than in non-hypoxaemic patients (2.9 (0.2) *v* 2.0 (0.3) inclusions/fibre; p<0.05). Exercise induced a greater increase in muscle TBARs and oxidised proteins in hypoxaemic patients than in non-hypoxaemic patients (40.6 (9.1)% *v* 10.1 (5.8)% and 51.2 (11.9)% *v* 3.7 (12.2)%, respectively, both p = 0.01). Neutrophil levels were significantly higher in hypoxaemic patients than in non-hypoxaemic patients (53.1 (11.6) *v* 21.5 (11.2) counts per fibre × 10−3; p<0.05). Exercise did not alter muscle neutrophil levels in either group. Muscle TNF-α was not detected at baseline or after exercise. **Conclusion:** Chronic hypoxaemia was associated with lower quadriceps endurance time and worsened muscle oxidative stress at rest and after exercise. Increased muscle neutrophil levels could be a source of the increased baseline oxidative damage. The involvement of a muscle inflammatory process in the exercise induced oxidative stress of patients with COPD remains to be shown. * FEV1, forced expiratory volume in 1 second * FVC, forced vital capacity * GPx, glutathione peroxidase * HR, heart rate * MCTSACT, mid thigh muscle cross sectional area * MVC, maximal voluntary contraction * Pao2, arterial oxygen pressure * ROS, reactive oxygen species * SOD, superoxide dismutase * Spo2, oxygen pulse saturation * TBARs, thiobarbituric acid reactive substances * TNF-α, tumour necrosis factor α * chronic obstructive pulmonary disease * exercise * hypoxaemia * lipid peroxidation * lipofuscin * oxidised protein * inflammation Exercise induced oxidative stress has been documented in the pulmonary, blood, and muscle compartments of patients with chronic obstructive pulmonary disease (COPD).1–3 Because oxidative stress can affect skeletal muscle contractibility and function,4 it has been proposed as a potential mechanism of peripheral muscle dysfunction and impaired exercise tolerance in this disease.5 Indeed, oral antioxidant supplementation with N-acetylcysteine improves quadriceps endurance in COPD,6 supporting a role for exercise induced oxidative stress in diminishing quadriceps endurance in these individuals. Oxidative stress is considered to be present when the highly reactive oxygen species (ROS) overwhelm the antioxidant defences. The role of hypoxia in modulating oxidative metabolism and production of reactive oxygen derived metabolites has been investigated in several in vitro and animal studies.7,8 Although these experiments have shown that the source of ROS production in hypoxia is likely to be the mitochondria, particularly the respiratory chain,8,9 the current understanding of the effects of hypoxia on in vivo human oxidative stress is only fragmentary. The available studies have focused on long term exposure to hypoxic conditions in healthy subjects. In these individuals, oxygen deficient environmental conditions such as those encountered during high altitude expeditions are associated with increased ROS production and oxidative stress in the systemic circulation at rest and during exercise.10,11 Little is known regarding the effects of hypoxaemia on skeletal muscle oxidative stress in humans. Two studies have reported cumulative oxidative stress and damage in resting muscle of healthy subjects exposed to an oxygen deficient environment. Martinelli and co-workers12 reported a threefold increase in basal levels of lipofuscin, a pigment marker of cumulative oxidative stress, in the vastus lateralis of climbers after a high altitude expedition over 5000 m for 8 weeks. More recently, Lundby and colleagues13 reported an increase in resting muscle oxidative DNA damage in seven healthy subjects after 2 weeks at 4100 m. Chronic hypoxaemia, a common physiopathological consequence of COPD, is associated with poor tolerance of peripheral muscle exercise.14 The literature on environmental hypoxia suggests that chronic hypoxaemia in COPD could contribute to peripheral muscle oxidative stress under resting conditions and after exercise.12,13 The primary objective of this study was therefore to test whether chronic hypoxaemia worsens peripheral muscle oxidative stress in patients with COPD at rest and in response to exercise. The underlying mechanisms for hypoxia induced oxidative stress have yet to be investigated in humans. In vitro studies suggest that inflammation, via the release of cytokines or neutrophils, is one potential pathway.15 In cultured cells, hypoxia resulted in an activation of nuclear factor kappa-B, a central transcription factor involved in the orchestration of inflammatory cascade events.16,17 In COPD, reduced lung function is associated with increased blood inflammatory markers.18 Furthermore, Takabatake and co-workers showed that arterial oxygen tension (Pao2) is inversely correlated with circulating tumour necrosis factor alpha (TNF-α) and its soluble receptor,19 suggesting that hypoxaemia in COPD could be associated with the development of a systemic inflammatory process. These results led to the hypothesis that hypoxaemia could worsen muscle oxidative stress through the induction of an inflammatory process in the peripheral skeletal muscles. The second objective of this study was therefore to investigate whether an abnormal inflammatory process occurs at rest and after exercise in the peripheral muscles of hypoxaemic COPD patients. To achieve these two objectives, we investigated the effect of chronic hypoxaemia on oxidative stress and inflammatory mediators in the vastus lateralis muscle of COPD patients before and after localised muscle exercise designed to minimise the demand on the cardiorespiratory system.14,20 ## METHODS ### Subjects Eighteen ex-smoking men with stable severe COPD as defined by the GOLD guidelines21 volunteered to participate in the study. Patients were categorised into two groups according to their resting Pao2 whose cut off value corresponded to the lower normal limit as predicted by the Mellemgaard reference equation.22 One group consisted of non-hypoxaemic patients (n = 9, Pao2 >lower normal limit) and the other consisted of chronic hypoxaemic patients (n = 9, Pao2 8.0 kPa but lower than the lower normal limit based on the Mellemgaard predictive equation.22 Despite being only mildly hypoxaemic, their oxygenation status was clearly different from that of the non-hypoxaemic group (mean resting Pao2 1.72 (0.41) kPa lower than in the non-hypoxaemic group and, in contrast to the latter group, they showed a significant fall in Spo2 during exercise). Given that our two subgroups of patients were otherwise comparable, it is reasonable to assume that differences in blood oxygenation were involved in the observed difference in the peripheral oxidative stress and inflammatory status between them. #### Quadriceps exercise protocol The localised muscle exercise used in the study to assess muscle endurance has been discussed previously in terms of its reproducibility and specificity to the quadriceps.3 Previous electromyographic recordings of the thigh indicated that only the quadriceps was active during this localised exercise.20 The increases in dyspnoea sensation and heart rate following exercise were of small amplitude. In contrast, the increase in the perception of muscle fatigue was higher, suggesting that the main reason for stopping exercise was peripheral and not related to respiratory or cardiovascular limitations. #### Markers of muscle oxidative stress A useful feature of lipofuscin is its tendency to accumulate slowly over time, as it cannot be eliminated effectively.43 Since lipofuscin accumulation reflects the magnitude of lipid peroxidation, it can thus be used as a marker of cumulative oxidative stress and has therefore been evaluated only in pre-exercise biopsy specimens.28,43 In contrast, TBARs were used as a marker of oxidant mediated lipid damage induced by exercising muscle. One potential limitation of TBARs is that, under oxidative stress conditions, malondialdehyde, hydroperoxides, and some carbohydrates and amino acids may yield products that are able to react with thiobarbituric acid.44 However, the spectrophotometric method that we used was sufficiently sensitive and reproducible to provide a valid estimation of oxidative stress,29 as previously discussed.3 Protein carbonyls are sensitive indices of oxidative injury45 and the detection of muscle oxidised proteins provided another fingerprint of exercise oxidative damage and strong evidence of exercise induced oxidative stress in our patients. #### Timing of the post-exercise biopsy The timing of peak values for an exercise induced increase in muscle oxidative stress markers is a highly debatable issue and, according to previous studies, has been found to vary from immediately after exercise to 72 hours after exercise.46–49 In this study the biopsy specimens were obtained 48 hours after exercise, as in a previous study by our group which showed increased oxidative stress in the quadriceps of non-hypoxaemic COPD patients 48 hours after an exercise protocol similar to the one used here.3 Since the mitochondria respiratory chain is one of the major sources of oxidant production during exercise, one can predict that the highest rate of ROS production and increased muscle lipid peroxidation should occur immediately after the cessation of exercise. However, ROS were not directly measured; rather, indirect markers of their presence (TBARs and oxidised proteins) which could be detected for a much longer period of time were evaluated.46–49 The timing of the second biopsy thus appears appropriate in evaluating the exercise induced muscle inflammation response.50 ### Conclusion This study shows that chronic hypoxaemia in COPD patients worsened peripheral muscle oxidative stress both at rest and during exercise. An increase in muscle neutrophil levels could be one potential mechanism of oxidative stress in skeletal muscle at rest. The presence and role of a muscle inflammatory process in the worsening of oxidative stress after exercise remain to be demonstrated. Understanding the underlying mechanisms by which hypoxaemia affects peripheral muscle oxidative stress in COPD will probably lead to the development of better therapeutic approaches for peripheral muscle dysfunction in this disease. ## Acknowledgments The authors thank Marie-Josée Breton, Marthe Bélanger, and Catherine Stott-Carmeni for valuable technical assistance. ## Footnotes * **Published Online First 17 June 2005** * This study was supported in part by a Canadian Institutes of Health Research grant number MOP-53135 * Competing interests: CK was supported by a travelling grant from La Cooperation Franco-Québécoise. FM is a research scholar of the Fonds de la Recherche en Santé du Québec. DS is a recipient of a PhD training award from the Fonds de la Recherche en Santé du Québec. ## REFERENCES 1. **Rahman I**, MacNee W. Oxidant/antioxidant imbalance in smokers and chronic obstructive pulmonary disease. Thorax1996;51:348–50. [FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6MzoiUERGIjtzOjExOiJqb3VybmFsQ29kZSI7czo5OiJ0aG9yYXhqbmwiO3M6NToicmVzaWQiO3M6ODoiNTEvNC8zNDgiO3M6NDoiYXRvbSI7czoyNToiL3Rob3JheGpubC82MC8xMC84MzQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 2. **Langen RCJ**, Korn SH, Wouters EFM. ROS in the local and systemic pathogenesis of COPD. Free Radic Biol Med2003;35:226–35. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1016/S0891-5849(03)00316-2&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=12885585&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000184285600002&link_type=ISI) 3. **Couillard A**, Maltais F, Saey D, *et al.* Exercise-induced quadriceps oxidative stress and peripheral muscle dysfunction in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med2003;167:1664–9. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1164/rccm.200209-1028OC&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=12672647&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000183473300014&link_type=ISI) 4. **Reid MB**. Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc2001;33:371–6. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1097/00005768-200103000-00006&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=11252061&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000167342400006&link_type=ISI) 5. **American Thoracic Society and European Respiratory Society**. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med1999;159:S1–40. [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=9872811&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000077987600001&link_type=ISI) 6. **Koechlin C**, Couillard A, Simar D, *et al.* Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease? Am J Respir Crit Care Med2004;169:1022–7. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1164/rccm.200310-1465OC&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=15001462&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000221094100011&link_type=ISI) 7. **Raguso CA**, Guinot SL, Janssens JP, *et al.* Chronic hypoxia: common traits between chronic obstructive pulmonary disease and altitude. Curr Opin Clin Nutr Metab Care2004;7:411–7. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1097/01.mco.0000134372.78438.09&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=15192444&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000222480600009&link_type=ISI) 8. **Hoppeler H**, Vogt M, Weibel ER, *et al.* Response of skeletal muscle mitochondria to hypoxia. Exp Physiol2003;881:109–19. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1113/eph8802513&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=12525860&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000182357200014&link_type=ISI) 9. **Chandel NS**, Schumacker PT. Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol2000;88:1880–9. [Abstract/FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamFwIjtzOjU6InJlc2lkIjtzOjk6Ijg4LzUvMTg4MCI7czo0OiJhdG9tIjtzOjI1OiIvdGhvcmF4am5sLzYwLzEwLzgzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 10. **Simon-Schnass IM**. Risk of oxidative stress at high altitude and possible benefit of antioxidant supplementation. In: Sen CK, Packer L, Hanninen, eds. Handbook of oxidants and antioxidants in exercise. Amsterdam: Elsevier, 2000:555–77. 11. **Bailey DM**, Davies B, Young IS. Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin Sci (Lond)2001;101:465–75. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1042/CS20010065&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=11672451&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) 12. **Martinelli M**, Winterhalder R, Cerretelli P, *et al.* Muscle lipofuscin content and satellite cell volume is increased after high altitude exposure in humans. Experientia1990;46:672–6. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1007/BF01939930&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=2373192&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=A1990DQ93600004&link_type=ISI) 13. **Lundby C**, Pilegaard H, van Hall G, *et al.* Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia. Toxicology2003;192:229–36. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1016/S0300-483X(03)00328-7&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=14580789&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000186504000010&link_type=ISI) 14. **Serres I**, Gautier V, Varray A, *et al.* Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest1998;113:900–5. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1378/chest.113.4.900&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=9554623&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000072978200013&link_type=ISI) 15. **Reid MB**, Li YP. Cytokines and oxidative signalling in skeletal muscle. Acta Physiol Scand2001;171:225–32. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1046/j.1365-201x.2001.00824.x&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=11412134&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000169352500004&link_type=ISI) 16. **Koong AC**, Chen EY, Giaccia AJ. Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res1994;54:1425–30. [Abstract/FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjk6IjU0LzYvMTQyNSI7czo0OiJhdG9tIjtzOjI1OiIvdGhvcmF4am5sLzYwLzEwLzgzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 17. **Matsui H**, Ihara Y, Fujio Y, *et al.* Induction of interleukin (IL)-6 by hypoxia is mediated by nuclear factor (NF)-kappa B and NF-IL6 in cardiac myocytes. Cardiovasc Res1999;42:104–12. [Abstract/FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTM6ImNhcmRpb3Zhc2NyZXMiO3M6NToicmVzaWQiO3M6ODoiNDIvMS8xMDQiO3M6NDoiYXRvbSI7czoyNToiL3Rob3JheGpubC82MC8xMC84MzQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 18. **Gan WQ**, Man SF, Senthilselvan A, *et al.* Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax2004;59:574–90. [Abstract/FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToidGhvcmF4am5sIjtzOjU6InJlc2lkIjtzOjg6IjU5LzcvNTc0IjtzOjQ6ImF0b20iO3M6MjU6Ii90aG9yYXhqbmwvNjAvMTAvODM0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 19. **Takabatake N**, Nakamura H, Abe S, *et al.* The relationship between chronic hypoxemia and activation of the tumor necrosis factor-α system in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med2000;161:1179–84. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1164/ajrccm.161.4.9903022&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=10764309&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000086573400020&link_type=ISI) 20. **Andersen**. P, Adams RP, Sjogaard G, *et al*. Dynamic knee extension as model for study of isolated exercising muscle in humans. J Appl Physiol1985;59:1647–53. [Abstract/FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamFwIjtzOjU6InJlc2lkIjtzOjk6IjU5LzUvMTY0NyI7czo0OiJhdG9tIjtzOjI1OiIvdGhvcmF4am5sLzYwLzEwLzgzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 21. **Fabbri LM**, Hurd SS. Global strategy for the diagnosis, management and prevention of COPD: 2003 update. Eur Respir J2003;22:1–2. [FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiZXJqIjtzOjU6InJlc2lkIjtzOjY6IjIyLzEvMSI7czo0OiJhdG9tIjtzOjI1OiIvdGhvcmF4am5sLzYwLzEwLzgzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 22. **Mellemgaard K**. The alveolar arterial oxygen difference: its size and components in normal man. Acta Physiol Scand1966;67:10–20. [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=5963295&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=A19667925800002&link_type=ISI) 23. **Knudson RJ**, Slatin RC, Lebowitz MD, *et al.* The maximal expiratory flow-volume curve: normal standards, variability and effects of age. Am Rev Respir Dis1976;113:587–600. [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=1267262&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=A1976BQ62400003&link_type=ISI) 24. **Marquis K**, Debigaré R, Lacasse Y, *et al.* Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med2002;166:809–13. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1164/rccm.2107031&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=12231489&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000178027300008&link_type=ISI) 25. **Bergström J**. Electrolytes in man: determination by neutron activation analysis on needle biopsy specimens: a study on normal subjects, kidney patients and patients with chronic diarrhoea. Scand J Clin Lab Invest1962;14:1–10. 26. **Whittom F**, Jobin J, Simard MA, *et al.* Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc1998;30:1467–74. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1097/00005768-199810000-00001&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=9789845&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000076365600001&link_type=ISI) 27. **Mabuchi K**, Sréter FA. Actomyosin ATPase: quantitative measurement of activity in cryostat sections. Muscle Nerve1980;3:227–32. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1002/mus.880030307&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=6445504&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=A1980JR94500006&link_type=ISI) 28. **Allaire J**, Maltais F, LeBlanc P, *et al.* Lipofuscin accumulation in the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Muscle Nerve2002;25:383–9. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1002/mus.10039&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=11870715&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000174159400008&link_type=ISI) 29. **Ohkawa H**, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem1979;95:351–8. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1016/0003-2697(79)90738-3&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=36810&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=A1979GX79600005&link_type=ISI) 30. **Nakamura W**, Hosoda S, Hayashi K. Purification and properties of rat liver glutathione peroxidase. Biochim Biophys Acta1974;358:251–61. 31. **Sun M**, Zigman S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem1978;90:81–9. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1016/0003-2697(78)90010-6&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=727489&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=A1978FU89800009&link_type=ISI) 32. **Bland JM**, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurements. Lancet1986;1:307–10. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1016/S0140-6736(86)90837-8&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=2868172&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=A1986AYW4000013&link_type=ISI) 33. **Noguera A**, battle S, Miralles C, *et al.* Enhanced neutrophil response in chronic obstructive pulmonary disease. Thorax2001;56:432–7. [Abstract/FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToidGhvcmF4am5sIjtzOjU6InJlc2lkIjtzOjg6IjU2LzYvNDMyIjtzOjQ6ImF0b20iO3M6MjU6Ii90aG9yYXhqbmwvNjAvMTAvODM0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 34. **Oudijk EJD**, Lammers JWJ, Koenderman L. Systemic inflammation in chronic obstructive pulmonary disease. Eur Respir J2003;22:S5–13. [Abstract/FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiZXJqIjtzOjU6InJlc2lkIjtzOjE0OiIyMi80Nl9zdXBwbC81cyI7czo0OiJhdG9tIjtzOjI1OiIvdGhvcmF4am5sLzYwLzEwLzgzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 35. **Rahman I**, MacNee W. Role of transcription factors in inflammatory lung disease. Thorax1998;53:601–12. [FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6OToidGhvcmF4am5sIjtzOjU6InJlc2lkIjtzOjg6IjUzLzcvNjAxIjtzOjQ6ImF0b20iO3M6MjU6Ii90aG9yYXhqbmwvNjAvMTAvODM0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 36. **Agusti A**, Morla M, Sauleda J, *et al.* NF-kappaB activation and iNOS upregulation in skeletal muscle of patients with COPD and low body weight. Thorax2004;59:483–7. [Abstract/FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToidGhvcmF4am5sIjtzOjU6InJlc2lkIjtzOjg6IjU5LzYvNDgzIjtzOjQ6ImF0b20iO3M6MjU6Ii90aG9yYXhqbmwvNjAvMTAvODM0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 37. **McCord JM**, Roy RS, Schaffer SW. Free radicals and myocardial ischemia. The role of xanthine oxidase. Adv Myocardiol1985;5:183–9. [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=2982206&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) 38. **Heunks L**, Vina J, Cees L, *et al.* Xanthine oxidase is involved in exercise-induced oxidative stress in chronic obstructive pulmonary disease. Am J Physiol1999;277:R1697–700. 39. **Terasawa K**, Fujiwara T, Sakai A, *et al.* Comparison of muscle force, muscle endurance, and electromyogram activity during an expedition at high altitude. Int J Biometeorol1996;39:111–5. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1007/BF01211221&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=8937265&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) 40. **Esposito F**, Orizio C, Parrinello G, *et al.* Chronic hypobaric hypoxia does not affect electro-mechanical muscle activities during sustained maximal isometric contractions. Eur J Appl Physiol2003;90:337–43. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1007/s00421-003-0922-3&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=12937990&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000186542100013&link_type=ISI) 41. **Fulco CS**, Cymerman A, Muza SR, *et al.* Adductor pollicis muscle fatigue during acute and chronic altitude exposure and return to sea level. J Appl Physiol1994;77:179–83. [Abstract/FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamFwIjtzOjU6InJlc2lkIjtzOjg6Ijc3LzEvMTc5IjtzOjQ6ImF0b20iO3M6MjU6Ii90aG9yYXhqbmwvNjAvMTAvODM0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 42. **Zattara-Hartmann MC**, Badier M, Guillot C, *et al.* Maximal force and endurance to fatigue of respiratory and skeletal muscles in chronic hypoxemic patients: the effects of oxygen breathing. Muscle Nerve1995;18:495–502. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1002/mus.880180504&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=7739636&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=A1995QV20600002&link_type=ISI) 43. **Sohal RS**, Brunk UT. Lipofuscin as an indicator of oxidative stress and aging. Adv Exp Med Biol1989;266:17–29. [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=2486150&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) 44. **Haliwell B**, Chirico S. Lipid peroxidation: its mechanism, measurement and significance. Am J Clin Nutr1993;57:715–24. 45. **Levine RL**, Williams JA, Stadtman ER, *et al.* Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol1994;233:346–57. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1016/S0076-6879(94)33040-9&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=8015469&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=A1994BA88Q00037&link_type=ISI) 46. **Liu J**, Yeo HC, Overvik-Douki E, *et al.* Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol2000;89:21–8. [Abstract/FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamFwIjtzOjU6InJlc2lkIjtzOjc6Ijg5LzEvMjEiO3M6NDoiYXRvbSI7czoyNToiL3Rob3JheGpubC82MC8xMC84MzQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 47. **Alessio HM**, Goldfarb AH. Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training. J Appl Physiol1988;64:1333–6. [Abstract/FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamFwIjtzOjU6InJlc2lkIjtzOjk6IjY0LzQvMTMzMyI7czo0OiJhdG9tIjtzOjI1OiIvdGhvcmF4am5sLzYwLzEwLzgzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 48. **Moller P**, Loft S, Lundby C, *et al.* Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans. FASEB J2001;15:1181–6. [Abstract/FREE Full Text](http://thorax.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZmFzZWJqIjtzOjU6InJlc2lkIjtzOjk6IjE1LzcvMTE4MSI7czo0OiJhdG9tIjtzOjI1OiIvdGhvcmF4am5sLzYwLzEwLzgzNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 49. **Frankiewicz-Jozko A**, Faff J, Sieradzan-Gabelska B. Changes in concentrations of tissue free radical marker and serum creatine kinase during the post-exercise period in rats. Eur J Appl Physiol1996;74:470–4. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1007/s004210050101&link_type=DOI) 50. **Cannon**. G, St Pierre. B. Cytokines in exertion-induced skeletal muscle injury. Mol Cell Biochem1998;179:159–67. [CrossRef](http://thorax.bmj.com/lookup/external-ref?access_num=10.1023/A:1006828425418&link_type=DOI) [PubMed](http://thorax.bmj.com/lookup/external-ref?access_num=9543358&link_type=MED&atom=%2Fthoraxjnl%2F60%2F10%2F834.atom) [Web of Science](http://thorax.bmj.com/lookup/external-ref?access_num=000072602600017&link_type=ISI)