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ABSTRACT
Despite intensive research efforts, the aetiology of the
majority of chronic lung diseases (CLD) in both, children
and adults, remains elusive. Current therapeutic options
are limited, providing only symptomatic relief, rather than
treating the underlying condition, or preventing its
development in the first place. Thus, there is a strong
and unmet clinical need for the development of both,
novel effective therapies and preventative strategies for
CLD. Many studies suggest that modifications of prenatal
and/or early postnatal lung development will have
important implications for future lung function and risk
of CLD throughout life. This view represents a
fundamental change of current pathophysiological
concepts and treatment paradigms, and holds the
potential to develop novel preventative and/or
therapeutic strategies. However, for the successful
development of such approaches, key questions, such
as a clear understanding of underlying mechanisms of
impaired lung development, the identification and
validation of relevant preclinical models to facilitate
translational research, and the development of concepts
for correction of aberrant development, all need to be
solved. Accordingly, a European Science Foundation
Exploratory Workshop was held where clinical,
translational and basic research scientists from different
disciplines met to discuss potential mechanisms of
developmental origins of CLD, and to identify major
knowledge gaps in order to delineate a roadmap for
future integrative research.

DEVELOPMENTAL ORIGINS OF RESPIRATORY
HEALTH AND DISEASE: THE CONCEPT
Broad interest in developmental processes, and
their relationship to later human health, emerged
in 1986 when Barker et al demonstrated a positive
geographical correlation of infant mortality with
adult death rates from coronary heart disease in
England and Wales.1 The ‘Barker hypothesis’ pro-
posed that low birth weight, as a proxy for intra-
uterine nutrient restriction, might be the major
determinant for cardiometabolic disease in adult-
hood.2 This concept was further fuelled by retro-
spective observations from the ‘Dutch Hunger
Winter’ in 1944, where severe undernourishment
during pregnancy was associated with increased

susceptibility for obesity, arterial hypertension or
type II diabetes in the offspring.3 Over time, it
became clear that not only a highly deficient envir-
onment, but also other intrauterine exposures, such
as environmental toxicants and maternal disease
states are associated with later disease risks.
Accordingly, the concept of ‘Developmental
Origins of Health and Disease’ suggests that the
fetus makes physiological adaptations in response
to the intrauterine environment to prepare itself
for postnatal conditions. These adaptations may be
beneficial if intra- and extra-uterine environment
correspond to each other, but will be disadvanta-
geous if the postnatal environment has changed in
the meantime, or has been wrongly ‘predicted’.
While these hypotheses have been mainly elabo-
rated in relation to cardiometabolic diseases and
behaviour, epidemiological studies suggest that the
risk of developing chronic lung disease (CLD) is
equally modified through perinatal exposures. This
has been most convincingly shown for asthma4–6

and COPD,7–9 where a number of factors that are
either protective, or predispose to the disease, have
been identified. It is suspected that these modifica-
tions are, at least in part, mediated by epigenetic
mechanisms.10 This is important, as epigenetic
modifications have been shown to be transmitted
trans-generationally,11 suggesting that ‘memory’ of
previous environmental exposure in a population
may result in increased disease risk in subsequent
generations. Moreover, the importance of epigen-
etic processes also provides an opportunity for
intervention, as animal models have shown, that
interventions such as maternal dietary modification
in pregnancy have the potential to modify epigen-
etic programming and reduce subsequent disease
risk.12 Given all of this, we would like to propose a
Developmental Origins of Respiratory Health and
Disease (DORHaD) concept to focus activity on an
area with the potential to deliver improved respira-
tory health outcomes.
However, the extent to which disease risks are

established during embryo-fetal life and the under-
lying mechanisms are far from understood, and sus-
ceptible developmental windows have not been
adequately explored. If interventions that will
improve the health of the population with respect
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to CLD are to be developed, it is essential that these knowledge
gaps are addressed. To this end, a multidisciplinary team involv-
ing experts from developmental biology, immunology,
cell signalling, lung biology, stem cell biology, (epi)genetics, epi-
demiology and clinical science, met in an ESF-Exploratory
Workshop (http://www.esf.org/activities/exploratory-workshops/
medical-sciences-emrc.html?year=2011 &domain=EMRC) to
develop a conceptual framework for future research on develop-
mental origins of CLD. This review aims to demonstrate why
and how interactions among clinical and basic research disci-
plines can generate a fruitful cross-fertilisation of ideas to treat
and/or prevent CLD.

LUNG DEVELOPMENT—AND WHAT HAPPENS IF IT GOES
WRONG
Development and molecular pathways
Mammalian lung development begins by formation of a bud
from the floor of the primitive foregut around the fourth week
of human gestation and continues through the pseudoglandular,
canalicular, saccular and alveolar stages far into postnatal life.13

During this highly controlled process, the endoderm gives rise
to the different epithelial cell lineages, while structural compo-
nents of the lung, such as pulmonary vessels or airway smooth
muscle, originate from the mesoderm. Once fully mature, the
lung will harmonise the functions of around 40 different cell
types.14 The formation of such a complex organ requires the
precise spatiotemporal orchestration of multiple signalling mole-
cules during development. Animal models of airway develop-
ment demonstrate that early disruption of critical signalling
pathways can lead to abnormal pulmonary phenotypes after
birth. The first example for a phylogenetically conserved genetic
program orchestrating airway branching derives from the
Drosophila branchless (Bnl)15 and its mammalian homologue,
Fibroblast Growth Factor 10 (FGF10). Both, Bnl and FGF10,
are expressed and secreted by the surrounding mesenchyme of
the epithelial buds and control their outgrowth during early
lung development through their epithelial receptors, Breathless
and FGFR2-IIb, respectively. The crucial contribution of FGF10
signalling to branching morphogenesis is demonstrated by
Fgf10−/− and Fgfr2b−/− embryos which have lung agenesis.16

An entirely different level of regulation of lung development
involves microRNAs (miRNAs) that suppress gene expression at
the posttranscriptional level through binding of target mRNAs,
and regulate essential cellular functions, such as growth, differ-
entiation and programmed cell death. Hence, miRNAs have
already been shown to control the development of
broncho-alveolar tissues,17 and also respond to environmental
factors, such as LPS18 or tobacco smoke,19 while others partici-
pate in epigenetic regulation.20 Nonetheless, it is largely
unknown how microRNAs precisely regulate lung development
or contribute to airway tissue remodelling.

From developmental pathways to disease
Through experimental disruption of developmental pathways,
we now know that molecular pathways involved in lung devel-
opment can be recapitulated later in life, provoking pathologic
changes in complex respiratory diseases. For example, canonical
Wnt/β-catenin signalling has recently been identified as a key
pathway for early lung development.21 Wnt ligands and their
receptors are expressed in a highly cell-specific manner in the
developing lung and recede during later stages. In experimental
and human fibrotic lung disease, the Wnt/β-catenin signalling
pathway is aberrantly reactivated, and has been linked in vitro

and in vivo with alveolar epithelial cell repair mechanisms via
one of its target genes Wnt1-inducible signalling pathway
protein 1 (WISP1).22 In vivo depletion of WISP1 results in sig-
nificant attenuation of lung fibrosis and improved survival in
preclinical studies. Wnt-signalling genes have been further asso-
ciated with impaired lung function in two childhood asthma
cohorts,23 and activation of this pathway led to enhanced prolif-
eration of bronchial epithelial cells.24 However, the precise con-
tribution of each of the 19 Wnt ligands, 10 Frizzled receptors
and signalling components to development and disease remains
to be elucidated.

Studies in animal models and patients with pulmonary fibrosis
or COPD have also provided evidence for a reactivation of
other developmental pathways, such as TGF-β-, or PTEN/
PI3kinase/Akt-mediated signalling.25

From growth to lung function
For normal lifelong lung function, the prerequisites are: (1)
normal lung function at birth; (2) normal growth in lung func-
tion until the adult plateau at 20–25 years of age; and (3) no
accelerated deterioration from the plateau. Cohort studies have
established that lung function either tracks or deteriorates, but
never improves, after the preschool years.26–28 Thus, lung func-
tion in adult life is critically dependent on in utero and post-
natal lung development.

An important antenatal factor affecting newborn lung func-
tion is maternal smoking, which causes structural effects on the
developing lung.29 A study in more than 13 000 people showed
that childhood disadvantage defined by either maternal or pater-
nal asthma, childhood asthma, maternal smoking and childhood
respiratory infections predicts worse adult lung function, a
faster rate of lung function decline, and a greater prevalence of
COPD.30 Other important influences include maternal anti-
biotic31 and paracetamol32 use, maternal psychological stress,33

nutrition,34 diabetes, hypertension35 and exposure to
pollution.36

Equally important is to comprehend whether patterns of
early somatic growth are associated with altered respiratory and
immune development. Anthropometric measurements at birth,
and markers of fetal growth, have been linked epidemiologically
to asthma.37 38 In a recent large cohort study, longitudinal pre-
natal and infant growth patterns were related to wheeze and
atopy at age 3 years in 1548 children.39 A rapid growth trajec-
tory during 11–19 weeks of gestation followed by late gestation
growth faltering was associated with atopy, suggesting that influ-
ences affecting fetal growth may also alter immune develop-
ment. In contrast, a lower early fetal growth trajectory was
associated with non-atopic wheeze, possibly reflecting an associ-
ation with smaller airways.

With continuously improving survival rates, preterm birth is a
further and increasingly important cause of early onset airflow
obstruction. Recent evidence suggests that even non-ventilated
late preterm infants from 33 weeks of gestation onwards show
impaired lung function at least until the age of 8–9 years.40

In children, it is essential to distinguish between the effects
of disease from those of growth and development. However,
structural assessments of lung and airway dimensions do not
necessarily reflect functional changes in lung growth and devel-
opment, or vice versa. There are many tests of lung function,
each interrogating a different airway region. For example, spir-
ometry gives information about proximal airway disease,
whereas, tests of gas mixing, such as lung clearance index (LCI)
are more sensitive to distal airway problems. It is also not
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possible to distinguish alveolar number from alveolar size, as the
cause of lung volume changes and measured lung volume
changes may be artefactual due to airway disease. Thus, DLCO
may give a measure of alveolar surface area, but the measure-
ment is also vulnerable to impaired gas mixing. Determining
whether there is disease in the silent regions of the lung (distal
airways) or at the silent ages (2–6 years) is also a challenge. It is
now possible to record flow volume curves in infancy (raised
volume rapid thoracic compression technique), in pre-schoolers
(using incentive spirometry) and from school age right through
into old age (conventional spirometry). LCI can be performed
at all ages, and after the first year of life, has the same normal
range independent of age or height. This technique has been
shown to be most sensitive in cross-sectional and longitudinal
studies in cystic fibrosis,41 and preschool LCI is strongly predict-
ive of school-age lung function abnormalities.42

In summary, tools for measuring lung function from birth to
old age are available. However, while there is a good under-
standing of spirometry, it is relatively insensitive, in particular,
to early airway disease. On the other hand, LCI is more sensi-
tive, but we lack experience in interpreting changes.
Nonetheless, suitable tools to monitor lung growth from birth
onward are available and will help to identify clinical sub-
phenotypes to ensure investigation of relevant outcomes, both,
in humans and in preclinical studies.

TOOLS OF THE TRADE—WHERE ARE WE NOW?
As highlighted above, an increased understanding of the early
life influences on lung development is needed to devise new
strategies aimed at the primary prevention of lung disease. This
requires development of cellular and animal models to investi-
gate biological mechanisms and test effectiveness of preventative
strategies.

Transgenerational studies in rodents have mainly focused on
global maternal under/overnutrition, restriction of selective
nutrients, psychological stress, or endocrine disorders, looking
at cardiovascular and behavioural outcomes in some instances
until the F2 generation.43 Evidence for transgenerational trans-
mission of risk for lung disease emerged when offspring from
tobacco smoke-exposed dams showed airway remodelling and
decreased pulmonary expression of Wnt-signalling molecules
and targets.44 A recent key study has demonstrated that nutritive
supplementation of dams with methyl donors affects asthma
risk across two subsequent generations, and involves differential
methylation of several pulmonary genes including runt-related
transcription factor 3 (Runx3) which, if not silenced, controls
airway inflammation.10 Similarly, exposure of dams to diesel
exhaust particles during gestation heritably alters innate immune
responsiveness in F1 and F2 generations.45

As well as for prenatal exposures, appropriate postnatal chal-
lenge models are required. For example, the role of commensal
bacteria in guiding the normal development of immune homeo-
stasis has received attention,46 and neonatal allergen exposure
models highlight how airway remodelling, inflammation and
airway hyper-reactivity developed in parallel, rather than
sequentially,47 supporting previous observations in humans.48

These observations underscore the importance of developing
mouse models that are not only relevant to clinical disease phe-
notypes, but also address different developmental phases.

Despite the comparatively quick generation time of murine
models and ample availability of molecular tools, refining of sus-
ceptible developmental windows for single types of exposures,

and assessing risk transmission until F3/F4 generations is time
consuming and expensive in mice.

The formation of the respiratory organ of the fruit fly,
Drosophila melanogaster, demonstrates the basic principles of
branch patterning and tube growth, and allows the analysis of
airway maturation at the genome-wide level with or without
perturbations and simplified interventions. Additionally, the
transparency of fly embryos allows the analysis of cellular activ-
ities of airway epithelial cells in unprecedented detail by live
imaging.

A comparative genomics approach among D melanogaster
and higher organisms can generate novel testable molecular
pathways. These can then be studied in detail in higher organ-
isms and during defined developmental stages. Such a preselec-
tion strategy would also justify efforts to move to large animal
models where the anatomy and physiology of the lung, the pla-
centa, pregnancy characteristics and dietary requirements have
closer resemblance to humans. Additionally, ‘high throughput’
identification of relevant types of exposures might be feasible in
lower organisms, such as D melanogaster.

Animal models need corresponding cell culture systems,
which, although lacking the context of physiology, allow the
biology of single molecules and pathways to be studied at high
resolution. Available molecular tools are applicable also for two,
triple or 3D culture systems to study the effects of intercellular
crosstalk on cell-specific changes in gene or protein expressions
in the context of exposures. These may be further complemen-
ted by whole-organ cultures, such as isolated ventilated perfused
lungs or bronchial ring studies, to study a specific function in
intact organs independent of the remainder organism, while
maintaining the local physiological homeostasis. However, per-
forming such analyses across species, and in combination with
in vitro and in vivo disease models requires a considerable col-
laborative effort among researchers.

WHY WE SHOULD TALK—A ROADMAP FOR FUTURE
RESEARCH
In understanding the mechanisms underlying DORHaD, a
major challenge will be the development of effective bridging
systems to establish collaboration among basic and clinical
sciences in order to combine expertise in human conditions
with detailed knowledge of complementary model systems. In
addition, computational biology is required to handle and
analyse complex datasets in a systems biology approach.

The discovery and functional description of pathways during
lung morphogenesis by developmental biologists have already
led to the generation of hypotheses that are testable in transla-
tional studies, for example, knowledge of the role of develop-
mental Wnt pathways in the pathobiology of pulmonary fibrosis
has led to the identification of WISP1 as a potential therapeutic
target.

Vice versa, reverse translation of clinical and epidemiological
findings is mandatory to drive novel basic research. Thus, the
identification of a number of maternal environmental exposures
during pregnancy, as risk factors for adverse lung development,
have formed the basis of mechanistic studies.49

These examples demonstrate that, while human clinical,
genetic and environmental epidemiological studies can identify
potential causes of disease, these will require the use of animal
models to provide supporting evidence and to investigate bio-
logical mechanisms. Proving causality from early environmental
exposures on development and disease will require a systematic,
focused and concerted effort. A roadmap for future
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cross-disciplinary research is depicted in figure 1. This, or
similar approaches, should lead to answers to the most pressing
questions (box 1) and will, hopefully, allow us to move on from

experimental and observational studies to interventional cohort
studies to prevent or cure CLD and deliver the promise of the
DORHaD approach.
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Figure 1 From observational studies, clinicians and epidemiologists create hypotheses to be tested in model systems. Developmental biologists
discover molecular pathways and susceptible developmental windows relevant for later disease. This can lead to the identification of candidate
treatment targets and testable hypotheses. A comparative genomics approach across model systems will allow to create hypothetical pathways
and biological processes. Their role in development can again be tested in model systems. Researchers in regenerative medicine, such as stem
cell biologists, work on practical applications that can be applied in interventional studies in the future.

Box 1 Questions that can only be answered in a
concerted effort

▸ What is the normal ontology of relevant cell populations,
and is their activity perturbed prior to the onset of disease?

▸ How do critical cell types and molecular events that initiate
CLD respond to exposures?

▸ Which exposures affect lung development, how do they do
so, and what are the crucial developmental time points?

▸ What are the underlying mechanisms of transgenerational
transmission of disease risks, including molecular pathways,
cellular interactions and epigenetic changes?

▸ What are relevant animal models that permit to track the
risk for specific chronic pulmonary diseases across
generations?

▸ What are triggers of normal development and of successful
repair processes to regenerate lung tissue in the chronically
injured lung?

▸ What is the effect of gender on developmental processes
and subsequent risk of disease, and the underlying
mechanisms?

▸ Which early life events affect the initial rate of increase and
later rate of decline in lung function?
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