
Neutrophils in cystic fibrosis

D G Downey,1,2 S C Bell,2,3 J S Elborn4

1 Adult Cystic Fibrosis Centre,
Bristol Royal Infirmary, Bristol,
UK; 2 Adult Cystic Fibrosis
Centre, The Prince Charles
Hospital, Brisbane, Australia;
3 Department of Medicine,
University of Queensland,
Australia; 4 Adult Cystic Fibrosis
Centre, Belfast City Hospital,
Belfast, Northern Ireland, UK

Correspondence to:
Dr D Downey, Adult Cystic
Fibrosis Centre, Bristol Royal
Infirmary, Bristol BS2 8HW, UK;
damian.downey@ubht.nhs.uk

Received 5 April 2007
Accepted 13 May 2007

ABSTRACT
Lung injury in cystic fibrosis is caused by recurrent airway
infection and inflammation. Neutrophils are important in
combating these infections but are also the predominate
cells involved in the inflammatory process. This review of
neutrophils in cystic fibrosis describes the cellular
mechanisms involved in their migration into the airways
and their role in bacterial phagocytosis. We discuss the
inflammatory process and its resolution and ultimately
how neutrophil function can be modulated.

Infection and inflammation damage the lungs in
patients with cystic fibrosis (CF), with changes
beginning early in life.1 Recent CF data suggest
infection initiates and sustains airway inflamma-
tion.2 The resultant lung injury is the main cause of
morbidity and mortality in CF. Neutrophils play a
vital role in lung defence against bacteria and are a
fundamental component of the innate immune
response. The airways in CF are characterised by a
neutrophil dominated inflammatory process pre-
dominately on the respiratory epithelial surface.3

Indeed, neutrophils are considered responsible for
the onset and promotion of the inflammatory
response within the CF lung.4

This review describes aspects of neutrophil
biology, including migration, activation, phagocy-
tosis, apoptosis and modulation. There are few
data on whether there is a fundamental difference
in the initial mechanisms of neutrophil migration
into the airways of patients with CF. Here,
inference is derived mainly from non-CF in vitro
and in vivo studies but specific CF differences are
discussed where available. Subsequent sections
primarily reference available CF data.

NEUTROPHIL MIGRATION INTO THE LUNG
Recruitment of neutrophils into the lung occurs via
the alveolar capillary bed and postcapillary venules.
It involves complex interactions between cyto-
kines, cell adhesion molecules and chemoattrac-
tants, leading to migration across the endothelium,
the extracellular matrix and the alveolar epithe-
lium due to a chemoattractant gradient. These
processes are summarised in fig 1.

Transendothelial migration
Transendothelial migration principally involves
three stages: rolling adhesion, strong adhesion
and migration. Rolling adhesion is mediated by
carbohydrate binding molecules called selectins,
which promote leucocyte rolling.5 In the resting
state, the endothelium expresses few adhesion
molecules and is relatively non-adhesive.
Adhesion begins by the rolling of neutrophils along
the endothelium. This transient tethering of
neutrophils is mediated by selectins and is initiated

by expression of E- and P-selectins on the
endothelial surface. It is recognised that patients
with CF have raised levels of circulating E-selectin6

and P-selectin7 compared with healthy controls and
may reflect a persistent inflammatory process.
Leucocytes constitutively express L-selectin, which
can be found on the tips of leucocyte microvilli
that make contact with the endothelium first.8 The
binding capacity of L-selectin is rapidly and
transiently increased following neutrophil activa-
tion, possibly via receptor oligomerisation.9

However, the adhesion is only strong enough to
induce rolling and not to stop the neutrophil
completely.5 L-selectin is rapidly shed from the
surface of the leucocytes after their activation.10 11

This can be mediated by interleukin 8 (IL8) and
other chemoattractants, such as formyl-methionyl-
leucyl-phenylalanine and platelet activating factor
(PAF).11 L-selectin shedding is required for the
regulation of leucocyte rolling. Russell et al
described a decrease in the shedding of L-selectin
in stimulated neutrophils from patients with CF
with an acute infective exacerbation.12 Inhibition
of L-selectin shedding decreases the leucocyte
rolling velocity and increases the transit time of
rolling leucoytes.13 The transit time has been
shown to be an important determinant of leuco-
cyte recruitment in vivo.14 The shedding of
L-selectin may also increase neutrophil recruitment
from the bone marrow.15 During their time in the
bone marrow, neutrophils increase their mobility,
deformability and chemotactic responsiveness.16 17

Normally only fully differentiated neutrophils
enter the circulation, but stimulation of the bone
marrow during an inflammatory reaction results in
the release of more immature neutrophils into the
circulation.18 As immature neutrophils are larger
and less deformable than mature ones, they
preferentially sequester in lung microvessels and
may mediate inappropriate lung injury.19 20

Strong adhesion of neutrophils involves b2
integrins. They are glycoproteins that have a
common b-chain (CD18) and different a-chains,
including CD11a, CD11b, CD11c and CD11d.
Integrins are present on the neutrophil surface
but in a low avidity state and unable to bind with
ligands on the endothelial surface until the
neutrophils are activated. It has been shown that
neutrophil expression of CD11b is reduced follow-
ing intravenous antibiotics for pulmonary exacer-
bations of CF.21 Inflamed endothelium produces
chemoattractants such as PAF, leukotriene B4 and
various chemokines, including the most potent
neutrophil chemokine in CF, IL8. IL8 binds to the
luminal surface of activated endothelium where it
is able to activate neutrophils.22 Bacterial cell
products such as formylated peptides and lipo-
polysaccharide also activate neutrophils. These cell
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products and other cytokines such as tumour necrosis factor a

(TNFa) also stimulate endothelial cells to synthesise IL8 and E-
selectin.23 Also, CD18 is activated during E-selectin mediated
neutrophil adherence to endothelium.24 The activation of
CD11/CD18 on the neutrophil surface causes a change in its
conformational state to a form that recognises the endothelial
ligand. The important ligands for CD11/CD18 on the endothe-
lial surface are intercellular adhesion molecule 1 (ICAM-1) and
ICAM-2, which are members of the immunoglobulin super-
family. ICAM-2 is constitutively expressed whereas ICAM-1
expression is increased on inflamed endothelium by proinflam-
matory cytokines (eg, TNFa).25 Serum levels of soluble ICAM-1
are raised in patients with CF, even at times of clinical stability,
compared with healthy controls,6 suggesting an ongoing
inflammatory process. This interaction between integrins and
their ligands promotes strong adhesion and stops the neutrophil
rolling.

Neutrophil migration occurs predominately at the borders of
endothelial cells where modifications of cell junctions allow
this. The cell adhesion molecules, platelet endothelial cell
adhesion molecule 1 (PECAM-1 or CD31) and junctional
adhesion molecule26–28 are involved in neutrophil transmigration.
Migration occurs via PECAM-1/PECAM-1 interaction while
maintaining the permeability barrier of the endothelial cell
monolayer.27 The endothelial surface density of ICAM-1 is
important in regulating this migration.29

Neutrophil adhesion to pulmonary endothelial cells and
migration into the lung may occur by CD11/CD18 dependent
or CD11/CD18 independent mechanisms.30 Different stimuli

within the lung can determine whether CD18 is required for
neutrophil migration into the lung. It is felt that stimuli from
gram negative bacteria require CD18, as 75–80% of neutrophil
migration is inhibited by CD18 antibodies.31 32 Animal studies
indicate that neutrophils migrate to the lung via the CD18
dependent pathway in acute Pseudomonas aeruginosa infection,
but the migration pathway shifts to the CD18 independent
route after chronic exposure.33 Mackarel et al have demonstrated
the preferential use of the CD18 independent migratory
mechanism by both control and CF neutrophils,34 suggesting
that blockade of the CD18 independent pathway may be a
method of decreasing neutrophil influx into the CF airways.

Migration through the extracellular matrix
Following transendothelial migration, neutrophils must pass
through the interstitium before entry into the lung. The
interstitium consists of two types of fibroblast, one that is
arranged parallel to the epithelium and the other perpendicular.
Burns et al demonstrated that neutrophils had increased
adherence (which is partially CD18 dependent) and motility
(which is totally CD18 dependent) on canine lung fibroblasts
when stimulated with PAF and IL8, respectively.35 Neutrophil
adhesion to cultured lung fibroblasts is also partially dependent
on fibroblast ICAM-1.35 It has also been noted that neutrophilic
expression of b1 integrin is significantly increased after
transendothelial migration,36 and ligation of b2 integrin provides
a signal for b1 integrin upregulation.37 Several extracellular
matrix proteins, including fibronectin, vitronectin, collagen and
laminin have been shown to function as ligands for integrins.38

It has recently been demonstrated that mindin, a extracellular
matrix protein, functions as a novel ligand for integrins and
plays a critical role in neutrophil recruitment.39

Migration across the alveolar epithelium
Neutrophils enter the alveolar lumen at epithelial tricellular
corners where the border of two type I pneumocytes meet the
border of a type II pneumocyte.40 41 It is possible that the
positioning of fibroblasts in the interstitium direct them to this
site.42 The processes regulating neutrophil migration across the
alveolar epithelium are not well understood. Transepithelial
migration is in a basal to apical direction and, unlike
transendothelial migration, the selectins and PECAM do not
appear to be involved.43 Much of the understanding of the
processes of transepithelial migration are based on studies of
intestinal epithelial monolayers. CD11b/CD18 plays an impor-
tant role in neutrophil migration but its ligand on the basal wall
of alveolar cells to facilitate this has not been totally elucidated.
ICAM-1 is not expressed in this region44 but is expressed on the
apical region of cell boundaries45 and is strongly induced by viral
infection of airway epithelial cells.46 Thus expression of ICAM-1
on the apical epithelial surface provides adhesive sites for
neutrophils at the site of infection that assist in antibacterial
activity.47 This has been investigated by blocking ICAM-1
receptors on CF bronchial epithelial cells; this inhibited the
adherence of neutrophils by 64%.48 Furthermore, lung tissue
collected at transplantation showed that neutrophils preferen-
tially accumulated in the CF surface epithelium which over-
expressed ICAM-1.7 Therefore, following neutrophil migration,
ICAM-1 can provide a mechanism for retention of neutrophils
at sites where they are required.

CD47, an immunoglobulin superfamily transmembrane
glycoprotein, is expressed on epithelial cells and neutrophils
(where it is stored in secondary specific granules). This

Figure 1 (1) Transient tethering of the neutrophil to the endothelial
surface is mediated by selectins (green and pink) and results in rolling
adhesion. (2) Strong adhesion to the vessel wall is mediated by activated
b2 integrins (red). (3) Migration between the endothelial cells is
facilitated by chemokines and chemoattractants. (4) Migration through
the extracellular matrix occurs along fibroblasts. (5) Migration through
the alveolar epithelial cells uses CD47-signal regulatory protein a (SIRPa)
(yellow). (6) Tethering to the apical surface of the alveolar epithelial cells
via b2 integrins and ICAM-1 (red). ICAM-1, intercellular adhesion
molecule 1.
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glycoprotein is involved in neutrophil transmigration of
intestinal epithelia following b2-integrin dependent adhesion.49

Its role in neutrophil migration of the alveolar epithelium has
not been described. However, Rosseau et al demonstrated that
monocyte migration across cultured alveolar epithelial cells
depended on both CD11b/CD18 and CD47.50 Signal regulatory
protein (SIRPa) is a transmembrane glycoprotein and is a
cellular ligand for CD47. Interactions between CD47 and SIRPa
have been shown to regulate neutrophil transmigration.51 The
interactions are complex and may involve SIRP on neutrophils
and tissue expressed CD47 (trans interactions) or cis interac-
tions between SIRPa and CD47 within the neutrophil
membrane.52

Further studies are required to explore these interactions and
enhance our understanding of neutrophil migration across the
CF alveolar epithelium to the site of infection.

GENES, CFTR AND THE NEUTROPHIL
Gene expression has been compared in blood neutrophils from
patients with CF and healthy controls. A macroarray of 1050
genes revealed upregulation of 62 genes (including those coding
for some chemokines and IL8) and downregulation of 27 genes
in CF neutrophils.53 None of the genes coding for adhesion
molecules were modulated (eg, ICAM-1 and ICAM-2). CF
sputum and blood neutrophils were also compared; this
demonstrated upregulation of two genes in sputum neutro-
phils.53 This included amphiregulin which is an epidermal
growth factor receptor ligand that contributes to TNF induced
IL8 release from airway epithelial cells, thus suggesting that
amphiregulin is a new marker of lung inflammation in CF.

The most common genetic defect in CF results in defective
transmembrane regulator protein (CFTR) processing so that the
CFTR protein does not reach the apical surface of the epithelial
cell. There is no direct link between the CF genetic defect and
the process of neutrophilic migration across the airway
epithelium.54 CFTR mutations do not lead to aberrant synthesis
of IL8. However, when CF neutrophils are cocultured with
CFTR deficient bronchial epithelial cells, there is increased
adherence and a threefold increase in IL8 levels.48 This
interaction may contribute to the sustained inflammatory
response seen in CF. It has also been demonstrated that CFTR
is expressed in neutrophils at the mRNA and protein levels55 but
it is unclear whether this specifically alters CF neutrophil
function.

NEUTROPHIL FUNCTIONS
When neutrophils arrive in the CF airway, they are primed,
activated and engage in bactericidal phagocytosis releasing
oxidants and proteases. These functions are described below.

Neutrophil priming and activation
Circulating neutrophils need to be primed to express their full
bactericidal capacity. Neutrophils can also cause extensive
endothelial cell injury after priming.56 There is evidence that
TNFa and IL8 in bronchoalveolar lavage from patients with CF
play a significant role in the priming and activation of CF
neutrophils.57 When TNFa and IL8 are used as activating
stimuli, CF neutrophils release significantly greater amounts of
neutrophil elastase compared with neutrophils from control
subjects and bronchiectatic patients.57 Recent data have shown
that airway neutrophils from patients with CF are primed and
resistant to anti-inflammatory signals delivered by IL10.58

Neutrophil phagocytosis
Following transport to the site of infection, bacterial phagocy-
tosis by neutrophils can take place. This involves two different
receptor classes found on the neutrophil surface: Fcc receptors,
which include FccRIIA (CD32) and FccRIIIB (CD16), and
complement receptors which include CR1 (CD35) and CR3
(CD11b/CD18 integrin).59 FccRIIIB and CD11b/CD18 are the
functional phagocytic receptors. Fcc receptor ligation initiates
the vigorous extension of pseudopods that surround and
ultimately entrap the bacteria.60 Changes in the level of
cytosolic calcium are required for granule secretion61 and for
granular fusion with neutrophilic phagosomes.62

Both intracellular and extracellular environments are impor-
tant in the regulation of neutrophil function. It is recognised
that pH can modulate neutrophil function. Lack of a CFTR
dependent apical epithelial bicarbonate conductance has been
suggested to cause increased acidification of the airway surface
liquid. In this normally acidic milieu, bacterial ingestion may
induce neutrophil necrosis, rather than apoptosis, and thus
promote lung parenchymal degradation.63

Furthermore, with the overwhelming bacterial load and
mucus characteristics of CF, the efficiency of neutrophil
phagocytosis is reduced. Chronic P aeruginosa infection results
in the secretion of quorum sensing compounds which play an
important role in the formation of bacterial biofilms.64

Neutrophils that settle onto biofilms appear to be unable to
migrate away from the point of contact even though they are
still capable of phagocytosis.65 Neutrophil accumulation within
biofilms may result in self-injury of the neutrophil by released
oxidants which in turn compromises host defense mechan-
isms66 67 and necrotic neutrophils can also serve as a biological
matrix to facilitate P aeruginosa biofilm formation.68 Morris et al
demonstrated that neutrophils from patients with CF had a
lower phagocytic capacity than circulating neutrophils from the
same patients or from normal control subjects.69 The authors
postulated that a failure of neutrophil phagocytic priming
during migration into the lung was the cause.

Brinkmann et al have demonstrated that neutrophils generate
extracellular fibres, or neutrophil extracellular traps. They are
composed of granule (eg, neutrophil elastase and myeloperox-
idase (MPO)) and nuclear constituents that disarm and kill
bacteria extracellularly.70 Interestingly, when neutrophil extra-
cellular traps were dismantled with recombinant human
deoxyribonuclease, an enzyme which selectively cleaves DNA,
the killing of bacteria was negligible.70

Oxidative burst
During phagocytosis of bacteria, neutrophils increase their
oxygen consumption through the activity of NADPH-oxidase
and superoxide is produced (O2

2). The O2
2 then rapidly

dismutates to form hydrogen peroxide (H2O2) catalysed by
superoxide dismutase, and MPO is released from neutrophil
primary granules.71 This oxidative burst is crucial for bacterial
killing but it has also been implicated in inflammatory damage
to the CF airways. MPO is capable of enhancing oxidative
induced injury to epithelial cells, most likely because of the
formation of the cytotoxic oxidant HOCl.72–74 It has been shown
that stimulated neutrophils from individuals with CF release
significantly more oxidants.75 However, a recent study demon-
strated that CF neutrophils exhibit normal extracellular
production of HOCl but have a defect in their ability to
chlorinate bacterial proteins from P aeruginosa, unveiling
defective intraphagolysosomal HOCl production.55 This poten-
tially results in reduced neutrophil phagocytic efficacy against
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this important CF organism. Van Der Vliet et al have
demonstrated the formation of MPO derived oxidising and
possibly nitrating species within the respiratory tract of patients
with CF, which collectively may contribute to lung damage.76

MPO levels have been found to correlate with decreases in
pulmonary function and disease severity77 78 with the MPO
polymorphism 2463G associated with more aggressive pul-
monary disease in CF.79

Proteases
Neutrophils also release proteases which are an important
component of the phagocytic process. They can also degrade
extracellular matrix and are therefore implicated in CF lung
damage. The most important are elastase and the matrix
metalloproteinases (MMPs).

A central role in the pathophysiology of CF has been
attributed to neutrophil elastase. Neutrophil elastase is stored
within the primary (azurophilic) granules and released follow-
ing surface activation, phagocytosis and cell death. It has been
demonstrated that isolated peripheral blood neutrophils from
patients with CF spontaneously release more elastase than
control neutrophils.80 Importantly, this elastase production was
not significantly altered following treatment with intravenous
antibiotics, suggesting continuing elastase activity despite
clinical improvement. Although its physiological role is to
degrade phagocytosed proteins, it causes significant damage to
the CF airway by degrading nearly all the structural proteins of
the lung, including elastin, collagen type I–IV, fibronectin and
proteoglycans.81 Urinary excretion of desmosine, a cross linking
amino acid specific to elastin, is a reflection of elastin
degradation. We have recently demonstrated that this and
neutrophil elastase are raised in patients that ultimately have a
poor outcome.82 Elastase can also cause prolongation of the
inflammatory process by degrading complement and releasing
C5a, a potent chemoattractant for neutrophils.83 Neutrophil
recruitment may be further augmented by the effect of elastase
on the epithelium to synthesise and secrete IL8.84 It can cause a
reduced ciliary beat frequency of the respiratory epithelium and
directly damage the epithelial cells.85 As it is a potent stimulator
of airway gland serous cells,86 bacterial colonisation can be
facilitated by excessive mucus production. Elastase may
inactivate several components of the immune system (eg,
immunoglobulins, immune complexes, complement compo-
nents87 and neutrophil cell surface receptors),88 thus interfering
with the ability of neutrophils to opsonise and eliminate
bacterial pathogens. Recently, Hartl et al have demonstrated
that IL8 promotes bacterial killing by neutrophils through its
chemokine receptor CXCR1 (IL8RA) and that elastase activity
in bronchoalveolar lavage fluid from patients with CF cleaves
CXCR1 on neutrophils and disables their bactericidal capacity.89

Twenty-three different MMPs have been cloned to date, with
additional members continuing to be identified.90 Matrilysin
(MMP-7) is induced in response to airway injury and is
markedly upregulated in CF and its catalytic activity is essential
for the repair of epithelial wounds.91 MMP-7 is much more
efficient than other metalloproteinases in the proteolytic
inactivation of a1-antitrypsin (AAT).92 Macrophage metallo-
elastase (MMP-12) is the most elastolytic enzyme of the MMP
family.93 Liu et al demonstrated that neutrophil derived MMP-9
provides a shield for neutrophil elastase activity.94 A recent
study of children with CF showed that induced sputum MMP-9
had a significant correlation with neutrophils, IL8 and
neutrophil elastase and an inverse relationship with forced
expiratory volume in 1 s (FEV1).95

In the normal lung, the airways are protected from the
damaging effects of proteases mainly by AAT and secretory
leucoprotease inhibitor. Secretory leucoprotease inhibitor is
produced by the respiratory epithelium mainly in the larger
airways. Only 33% is functionally active in the epithelial lung
fluid and it is therefore unlikely that it plays a significant role in
lung protection.96

AAT is the main elastase inhibitor in CF sputum.97 In the
absence of inflammation in the normal lung the antiprotease
activity of these molecules outweighs the protease burden,
preventing elastase damage to the airways and local host
defences. However, elevated levels of bronchoalveolar lavage
neutrophil elastase have been found in patients with cystic
fibrosis younger than 6 months.98 Therefore, AAT is over-
whelmed due to a relative imbalance of protease and anti-
protease. It can also be inactivated by the proteases
themselves.99 Thus neutrophil elastase induced lung injury
may potentially occur early in life.

RESOLUTION OF INFLAMMATION
Apoptosis plays a critical role in the host immune response and
contributes to the regulation of inflammation. It is the major
mechanism for removal of neutrophils from the sites of lung
inflammation.100 It involves a coordinated series of morpholo-
gical and biochemical steps in the cell causing its removal by
scavenger phagocytes.101 Early changes on the neutrophil cell
surface are particularly important as they signal macrophages to
phagocytose rapidly moribund cells before toxic breakdown
products or contents can injure surrounding tissue.102 It also
prevents macrophages from releasing proinflammatory media-
tors such as chemokines, granule enzymes and thromboxane103

thus limiting the potential damage to the lung.
Apoptosis is a mechanism essential to the regulation of

neutrophil haemostasis and inflammation. Therefore, alteration
of neutrophil apoptosis in CF would have significant effects on
the inflammatory response and resolution of infection.

The Fas (CD95)/Fas ligand (FasL) system is an important
cellular pathway regulating the induction of apoptosis. Fas is a
type 1 integral membrane protein and is a member of the TNF
receptor (TNFr) family that mediates apoptosis following
interaction with FasL. FasL is a type II protein member of the
TNF family that includes TNFa. Fas is constitutively expressed
on neutrophils, monocytes and eosinophils, whereas FasL
expression is restricted to neutrophils. Therefore, co-expression
of Fas and FasL on neutrophils could provide a mechanism for
the spontaneous apoptosis seen in neutrophils,104 105 or adjacent
cells could initiate apoptosis if one expressed Fas and the other
FasL.106 However, a recent study has investigated Fas expression
on neutrophils following intravenous antibiotics for pulmonary
exacerbations of CF. Its expression on sputum neutrophils did
not alter with treatment but its expression on blood neutrophils
decreased following antibiotics.21 Soluble FasL, an inducer of
apoptosis, also decreased following treatment. This at first
seems counter intuitive as it would be expected that neutrophil
apoptosis should increase to aid resolution of infection and
inflammation. Therefore, other apoptotic pathways may be
involved to assist in this.

Other important factors to consider are TNF receptors 55 and
75 (p55 TNFr-I and p75 TNFr-II). TNFa acting through these
receptors has a unique ability, unlike other neutrophil priming
and activating agents, to induce apoptosis. Murray et al have
shown this action to be bimodal (ie, prolonged incubation of
human neutrophils with TNFa can reduce apoptosis).107

Receptor p75 has a relatively short cytoplasmic domain with
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no death domain sequence, unlike p55.108 Therefore, p75 TNFr
appears to function as a facilitator of the death signal primarily
initiated via p55 TNFr. It is suggested that occupancy of p55 by
TNFa is a prerequisite for TNFa induced neutrophil apoptosis
and that TNFa binding to p75 TNFr is not critical for this
process.109 A recent study has shown a reduction in soluble p55
TNFr in sputum following treatment of pulmonary exacerba-
tions of CF.21

Pyocyanin, the major phenazine exotoxin, produced by P
aeruginosa, has also been shown to induce apoptosis.110 The
authors suggested that inappropriate induction of apoptosis
could deplete neutrophil numbers and function and in turn
impair host defence. However, it has been shown that the
percentage of apoptotic neutrophils in CF sputum did not vary
with different types of bacterial infection.111 Defective airway
clearance of apoptotic cells in CF may be due to elastase
mediated cleavage of phosphatidylserine receptors on phago-
cytes and therefore may contribute to ongoing airway
inflammation.112

It is clear that further work is required to define the role of
neutrophil apoptosis in CF and its place in the resolution of the
inflammatory process.

NEUTROPHIL MODULATION
Most of the major clinical manifestations, morbidity and
mortality of CF are related to the progressive damage to the
airways. Therefore, modulation of neutrophil function may
attempt to redress this. The effects of pharmacological
treatments on neutrophil function are discussed below.

Non-steroidal anti-inflammatory drugs
As CF involves infection and chronic inflammation, studies have
examined the role of non-steroidal anti-inflammatory agents
such as ibuprofen.113 A study by Konstan et al revealed that
ibuprofen led to a slower decline in pulmonary function and
improved body weight. However, there were concerns over side
effects, and plasma concentrations must be tightly controlled.
Paradoxically, neutrophil activation is increased by treatment
with ibuprofen at doses lower than the therapeutic range. More
recently, Konstan et al demonstrated a 31% reduction of
neutrophils in CF oral mucosa if peak plasma ibuprofen
concentration was .50 mg/ml.114 However, Fennell et al have
investigated the use of high dose ibuprofen in a paediatric CF
centre and discovered that nearly half of the patients
discontinued therapy due to adverse events.115 The authors
commented that neither the use of ibuprofen nor its cessation
resulted in a significant change in the rate of decline in
pulmonary function or influenced hospitalisation rates.

Corticosteroids
An in vitro study has demonstrated that prednisolone can
reduce neutrophil migration across cultured human endothelial
and bronchial epithelial cells.116 Oral corticosteroids have also
reduced the rate of decline of CF lung disease but side effects
have limited the use of this as therapy.117 Despite frequent
usage, the role of inhaled corticosteroids is unclear at present
but a double blind placebo controlled trial of inhaled cortico-
steroid therapy showed no benefit from inhaled beclometha-
sone.118 A recent multicentre randomised controlled trial in CF
demonstrated no change in lung function or usage of rescue
bronchodilators when inhaled corticosteroids were withdrawn.119

Macrolide antibiotics
Several recent studies have reported important clinical benefits
of azithromycin in patients with CF,120–122 including improved
lung function and quality of life, reduced hospitalisation and
reduced systemic markers of inflammation. Macrolides may act
through antimicrobial action or through immunomodulatory
properties. Recent years has seen the use of macrolides,
especially azithromycin, as an anti-inflammatory agent. The
mode of action is not entirely clear but is thought to act by
suppressing proinflammatory cytokines and altering neutrophil
function.123 124 Azithromycin in a CF mouse model attenuated
neutrophil recruitment and inhibited cytokine (TNFa and
macrophage inflammatory protein 2) release in lipopolysacchar-
ide induced inflammation.125 Macrolides can inhibit superoxide
generation by activated neutrophils in vitro126 and accelerate
apoptosis.127 A recent study of healthy human subjects
administered azithromycin observed initial neutrophil degranu-
lation.128 Immediate oxidative responses to particulate stimuli
were enhanced after azithromycin exposure, but there were
reductions in IL8 and IL6 concentrations and delayed and
prolonged reduction in the oxidative burst which persisted for
up to 28 days after administration of azithromycin. The
authors hypothesised that acute neutrophilic degranulation
and oxidative burst may contribute to an antimicrobial effect
and delayed inflammatory responses may contribute to an anti-
inflammatory effect of macrolides. Inhibition of neutrophil
elastase can also be induced by the 14 membered macrolides
erythromycin and flurithromycin.129

Antiproteases
In order to protect the lung from damage mediated by
neutrophil elastase, the use of AAT has been investigated. The
neutrophil elastase burden in adults has been shown to be
suppressed with aerosolised plasma purified AAT.130

A double blinded, randomised, placebo controlled, parallel
group trial in 39 patients with CF was carried out using
nebulised transgenic AAT.131 The safety and tolerability of AAT
was demonstrated. Although MPO levels were generally lower
on AAT, sputum free neutrophil elastase activity remained
unchanged. However, in a study of 52 patients with CF by
Griese et al, elastase activity and neutrophil numbers were
reduced following inhalation of AAT.132 Unfortunately, these
studies did not show an improvement in lung function
following treatment. As the study drug was only administered
for 4 weeks, it is possible that more prolonged periods of AAT
usage may be required before a clinical effect is seen. However,
4 weeks of inhaled AAT by subjects with CF improved the
bacterial killing capacity of airway neutrophils and as a
consequence the number of colony forming units of P aeruginosa
in CF sputum decreased.89

Other treatments
Several other treatments have been recently investigated as
potential anti-inflammatory therapies. Deoxyribonuclease is an
established treatment modality in CF which is thought to have
its major action as a mucolytic agent. It has also been
demonstrated that it can stabilise bronchoalveolar lavage
neutrophil numbers, elastase activity and IL8 concentration
over time.133 It can also decrease bronchoalveolar lavage MMP
levels.134 A recent study has investigated the use of high dose
oral N-acetylcysteine, a glutathione prodrug, in 18 stable
patients with CF.135 It revealed a reduction in airway neutrophil
burden and sputum elastase activity. Furthermore, as cysteinyl
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leukotrienes have been found in the sputum of patients with
CF, a recent study investigated the effects of montelukast.136 In
this 20 week, randomised, double blind, placebo controlled,
crossover trial in 26 patients with CF, the authors discovered
that montelukast treatment increased FEV1 and decreased
sputum levels of IL8 and MPO. Additional multicentre studies
are needed to evaluate the potential anti-inflammatory roles of
these therapies in patients with CF.

Research into currently available drugs have investigated their
anti-inflammatory properties and therefore may provide future
therapies in CF. Pioglitazone, a peroxisome proliferator acti-
vated receptor gamma ligand, can through its action on nuclear
factor kB attenuate lung ischaemia–reperfusion injury in rats.137

These protective effects involve inhibition of the production of
proinflammatory cytokines and reduce lung neutrophil accu-
mulation. The administration of simvastatin, a lipid lowering
drug, to a murine inflammatory model of acute lung injury
demonstrated reduced bronchoalveolar lavage myeloperoxidase
activity and total neutrophil counts.138

Anticytokines may also play an important role. Anti-TNF is
an anti-inflammatory treatment for rheumatoid arthritis but
TNF also plays an important role in host defense and tumour
growth control. A recent metanalysis of patients with
rheumatoid arthritis treated with anti-TNF therapy revealed
an increased risk of serious infections and a dose dependent
increased risk of malignancies,139 suggesting that the anti-
inflammatory effects can potentially have unexpected and
deleterious effects on patients with chronic inflammatory
conditions.

CONCLUSIONS
In this review, we have followed the neutrophil in its path to
the airway lumen and described its functions and modulation.
Host and bacterial derived chemoattractants play a key role in
the migration of neutrophils into the lung but this is a complex
area and not fully understood. Acknowledging the limitations of
non-CF neutrophil experimental data and its interpretation in
this complex inflammatory milieu, it is recognised that there is
an increased burden of neutrophils in the CF airways and that
there are functional differences in these neutrophils.
Importantly, neutrophils are not only important effectors of
bacterial phagocytosis but are also at the centre of the
inflammatory process in CF. This duality is important to
understand and to investigate as insights into CF specific
neutrophil function may lead to novel therapies.

Competing interests: None.
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