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Intrapulmonary gas distribution and mix-
ing is an important functional property of
the lungs and can be characterised by the
multibreath washout (MBW) technique. By
computing indices from the entire washout
curve, ventilation inhomogeneities can be
characterised.1–5 Developed in the late 1980s
for use in children,6–8 MBW measurements
are taken during tidal breathing and have
been used in infants9–12 as well as preschool
children.7 12 13 This technique is especially
advantageous in the latter as only a few
tests exist for measuring pulmonary func-
tion without active subject cooperation.

The MBW allows us to measure func-
tional residual capacity (FRCMBW), which
can be used in combination with the
plethysmographic intrathoracic gas volume
(FRCpleth) to determine the amount of
trapped gas in the lungs (VTG).14–17 In
addition, using the washout curve, different
measures of ventilation inhomogeneity can
be obtained. The lung clearance index (LCI)
is defined as the number of lung volume
turnovers (cumulative expired volume
divided by FRC).2 3 5 Other more sophisti-
cated indices include the moment ratios
(m1:m0, m2:m0),

4–8 10 18 19 mixing ratio (ratio
between the actual and ideal breaths needed
to lower the tracer gas to a defined end-tidal
concentration in relation to the starting
concentration)13 20 and the alveolar-based
gas dilation number.19 21

At present, LCI is the most commonly
used of these indices, partly because it is
arguably the most intuitive and easiest to
be communicated to patients. Of note,
these indices of intrapulmonary gas mix-
ing are independent of age. Moreover, LCI
has been shown in patients with cystic
fibrosis (CF) to be more sensitive than
spirometry for detecting changes in small
airways,13 to be the earliest indicator of
disease progression during longitudinal
follow-up,16 and is ideal for detecting

changes early in life, monitoring the effect
of treatment and tracking lung disease
with age.10 12 16 18 22 23

The development of computers and
advances in the knowledge of physio-
pathology have accelerated the technical
evolution of the MBW technique, includ-
ing derived methods such as the analysis
of slope III which yields even more
detailed information regarding inhomo-
geneity.22 24 25 The equipment used to
date, however, has constraints that have
prevented a more widespread application
of MBW. The so-called nitrogen washout
requires breathing of 100% oxygen to
wash out the resident nitrogen in the
lungs which can change the breathing
pattern and influence the results.26 The
use of inert gases such as helium or sulfur
hexafluoride (SF6) (ie, those not absorbed
by the pulmonary blood stream) over-
comes this problem but requires a com-
plete wash-in of the respective gas. This
leads to a long measurement duration,
especially in disease, and a possible source
of error arises as an incomplete wash-in
would result in subsequent underestima-
tion of the true FRC, again particularly in
diseased subjects.8 Moreover, the mass
spectrometer (MS) is currently the con-
ventional gold standard used to assess the
concentration of these inert gases, which
is relatively costly, bulky, needs to operate
under particular physical conditions and
requires customised set-up of the technical
equipment and the software as no com-
mercial system is currently available.
Besides nitrogen and infrared analysers,
another commercially available equipment
for MBW uses a validated ultrasonic flow-
meter (USFM) which simultaneously deter-
mines the density of the passing gas
mixture27 and calculates the corresponding
concentration of the known constituent
gases from this. However, this equipment
has mainly been used in infants, and only
recently has a study in older children been
published comparing the USFM system
with the MS in a side-stream sample.11

In this issue of Thorax, Holsley and co-
workers28 report a new measurement
device with potential advantages over

existing measurement equipment (see
page 135). The Innocor device was
originally used to measure cardiac output,
and makes use of differences in infrared
absorption spectra to measure gas con-
centrations. Unlike previous SF6 infrared
analysers used for MBW,29 30 it measures
carbon dioxide simultaneously in addition
to SF6. The set-up is quite similar to the
side-stream USFM, where the sampling is
done via a Nafion tube in order to
eliminate the effect of temperature and
humidity, and is considerably less bulky
than the MS. It has a high signal-to-noise
ratio, good resolution and a low drift that
is superior to that of the MS and possibly
equivalent to that of the USFM. It also
detects SF6 at one-twentieth of the gas
concentration operating range of the MS
and USFM, which means that only a
small amount of gas is required for
measurements. This has benefits both
from an economic and environmental
point of view: SF6 is an expensive gas
and its effect on the ozone layer has been
raised as an issue in recent times.31 While
this is a negligible problem in infants, it
becomes of greater significance given the
larger amount of gas needed for use in
older children. The device is already
commercially available, although so far
only for exercise testing,32 and thus
adaptations to the set-up as well as
analysis software are needed for use in
the MBW technique. Although there was
a tenuous dependency with age, Horsley
et al were able to show good acceptability,
reproducibility, and sensitivity in detect-
ing CF with this device in adults.28

On the other hand, there are apparent
drawbacks to the device. In its present
implementation the Innocor device can-
not measure oxygen or helium. In addi-
tion, the apparatus dead space is higher
than that currently proposed by the ATS/
ERS standards for preschool measure-
ments33 (and even more so in infants),
and limits its use in very sick patients
with CF with CO2 retention. The fact
that a dead space/tidal volume ratio of
.0.234 may artificially increase indices of
ventilation inhomogeneities is important
to consider when using this equipment in
patients with small tidal volumes, such as
those with neuromuscular disorders.
Neither the relatively high dead space
nor the slow response time fulfil measure-
ment specifications required for use in
infants as well as preschool children.35 In
this age group, the USFM may still be the
better choice than the two pneumotacho-
graph-based systems in terms of flow
range and resolution, as well as the need
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for correction of the delay between flow
and gas analyser signal.36 37 However, the
Innocor device may prove to be promising
for the measurement of gas concentration
and for use in older children and adults.

Before this or any other system can be
used more widely, some issues still need
to be resolved regarding measurement and
analysis. Standards for performing MBW
measurements exist for infants (only for
the use of nitrogen)38 and for preschool
children,33 but these do not take into
account differences between equipment.
Moreover, no international reference
values for MBW parameters currently
exist. There is therefore an urgent need
for standardisation of MBW measure-
ments and availability of reference values
in older subjects as well. It has been
known for a long time that indices of lung
ventilation depend on the ratio of venti-
lated dead space and tidal volume,8 34 an
interrelationship which is even more
important in small infants with low tidal
volumes, possibly explaining higher
observed LCI values in younger infants.12

This is important to consider when
measuring with or without a filter, and
with a mouthpiece or facemask. The
influence of the latter option and of
different tracer gases on the results is
unknown. Here again, a standardised
index independent of breathing pattern
and dead space/tidal volume ratio would
be preferable,19 21 especially since it is
unclear which of the proposed indices
are superior in discriminating between
health and disease.8 Other points that
may impact on the results are the
suctioning of a constant flow for the
purposes of gas sampling between the
flow sensor and the patient—as used in
the side-stream set-up and the MS—and
the different effects of temperature and
humidity as well as corrections for BTPS
conditions. The criteria for determining
the end of washout is currently arbitrarily
defined, dating from the days of nitrogen
washouts.3 4 Finally, the long duration of
the test does not yet allow its widespread
use in daily clinical practice.

A simple and non-invasive method like
the MBW technique holds much promise.
Measurements of intrapulmonary inhomo-
geneity have good repeatability and accept-
ability. Clinically, it might also be useful in
patient groups other than CF and for
monitoring environmental effects on small
airway function, as shown for tobacco
smoke.39 Although there are still many
issues to be resolved, the introduction and
careful validation of the Innocor device as
reported by Horsley et al28 is an important

step towards acceleration of the renaissance
of the MBW technique. This report hope-
fully will stimulate researchers and manu-
facturers to improve current measurement
equipment and analysis software in order to
help standardisation and allow comparison
between centres.
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