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The prevalence, prognosis, clinical presentation,
pathophysiology, diagnosis, and treatment of the central
sleep apnoea syndrome (CSAS) are reviewed and its
relationship with congestive heart failure (CHF) is
discussed. Adequately powered trials are needed with
survival and health status as end points to establish
whether correction of sleep related breathing
abnormalities improves the outcome in patients with
CHF.
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In recent years a number of studies have been

published investigating the relationship be-

tween chronic congestive heart failure (CHF)

and the central sleep apnoea syndrome (CSAS).

CSAS has a hypercapnic and a hypocapnic form.

The hypercapnic form results from a chronically

depressed respiratory drive or ability to breathe,

and is associated with hypercapnia during wake-

fulness and sleep.1 Hypocapnic CSAS, which is

discussed in this paper, is much more prevalent. It

is not caused by snoring or mechanical obstruc-

tion of the upper airway (obstructive sleep apnoea

syndrome), but has a completely different cause

and pathophysiology (fig 1).2

The typical nocturnal breathing pattern in the

majority of patients with hypocapnic CSAS is of

periodic breathing, characterised by a regular,

crescendo-decrescendo oscillation of tidal volume

(fig 2) which is thought to be caused by dysfunc-
tion of central respiratory control. As the central
drive to breathe slowly fades, ventilation tempo-
rarily ceases before resuming again. This results
in an oscillation between central hypopnoea (a
decrease of >50% in the sum of thoracoabdomi-
nal movements lasting 10 seconds or more
followed by a decrease of >4% in peripheral oxy-
gen saturation (SaO2)) or central apnoea (a reduc-
tion of >90% in thoracoabdominal movement or
complete cessation of ventilatory efforts) and
hyperventilation.3 The typical length of one period
is 30–60 s, but longer periods have been observed.
During a prolonged hypopnoea or apnoea the
oxygen saturation decreases, combined with a
slow rise in the arterial carbon dioxide tension
(PaCO2) and a decline in blood and tissue pH. Cen-
tral nervous system activity, derived from cortical
electroencephalography (EEG), in most cases
remains unaffected until late apnoea. However,
changes towards lower activity and deeper sleep
stages during apnoea have occasionally been
found.4 In many cases the resumption of ventila-
tion is associated with EEG arousals, which are
markers of central nervous system activation,5

and disturbed sleep which is driven back to a
more superficial level.

Cheyne-Stokes respiration (CSR) is commonly
used as a synonym for periodic breathing, but
some authors distinguish between the two. If the
intervals of hyperventilation are separated by
hypopnoeas only it is described as periodic
breathing, but if both hypopnoeas and apnoeas

Figure 1 Taxonomy of the central
sleep apnoea syndrome.
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are present it is termed CSR (fig 2).6 7 In this review, hypocap-

nic CSAS and periodic breathing are used as synonyms. It had

been suggested that three or more successive periods are nec-

essary for the diagnosis of periodic breathing,8 but there is no

generally accepted definition.

In most patients periodic breathing is present during light

sleep stages 1 and 2 and rarely during rapid eye movement

(REM) sleep. The amount of periodic breathing varies widely

between different patients, but seems to be constant over suc-

cessive nights in an individual.9

PREVALENCE
Although found in a number of diseases and in some normal

subjects, particularly at high altitude, the highest prevalence

of CSAS is found in patients with severe chronic left ventricu-

lar insufficiency, in whom it was first described by Cheyne in

181810 and again by Stokes in 1854.11 Recent reports12 13

estimate the prevalence of periodic breathing in patients with

underlying ischaemic heart disease or idiopathic dilated

cardiomyopathy, a maximum ejection fraction of 40%, and

optimised medical treatment to be 45–50%. Most of these

patients are male. Whether this reflects the unequal sex

prevalence of cardiac diseases or whether sex hormones play

an additional role is not known.14

CHARACTERISTICS AND PROGNOSIS IN HEART
FAILURE
The presence of periodic breathing during sleep in patients

with CHF has significant implications. Patients with CHF and

periodic breathing are more limited in their physical perform-

ance and develop dyspnoea at lower workloads than patients

with disease of similar severity but without periodic

breathing.15 On average, the left ventricular ejection fraction is

lower in patients with periodic breathing and the prevalence

of cardiac arrhythmia is significantly higher than in patients

with the same degree of heart failure but without periodic

breathing.16 17

The prognosis of patients is worse if CHF is associated with
a sleep apnoea syndrome.18 Hanly and co-workers19 conducted
a survey of patients in chronic CHF with and without noctur-
nal CSR matched for age, sex, body mass index, severity and
duration of heart disease, and cardiac medication. The cumu-
lative survival and transplant free rate was significantly worse
for patients with CSR (100% v 66% after 1 year, 86% v 56%
after 2 years, respectively; fig 3). The apnoea-hypopnoea index
(see below) has been shown to be an independent predictor of
poor prognosis.20 Andreas and co-workers8 found an increased
likelihood of dying within a few months in patients with CHF
and CSR during wakefulness. Complex arrhythmias, includ-
ing (non-sustained) ventricular tachycardia, are much more
prevalent in patients with CSR.21

CLINICAL PRESENTATION
The typical symptoms of CSAS are daytime hypersomnolence

and fatigue. Repetitive arousals cause sleep fragmentation

with a reduction in the amount of slow wave and REM sleep

which are the most refreshing sleep stages.22 23 Artificial sleep

fragmentation in volunteers has been shown to result in

excessive daytime hypersomnolence, similar to the symptoms

of patients suffering from CSAS.24

Figure 2 Five minute section of a polysomnographic record of EEG (C3A1, C4A2), electrocardiogram (ECG), oronasal air flow (Flow),
abdominal ventilatory effort (ABD), thoracic ventilatory effort (THO), and oxygen saturation measured at the finger tip of the left hand (SaO2) in
a 57 year old man with moderate ischaemic CHF (NYHA II–III). Typical breathing pattern with Cheyne-Stokes respiration with hyperpnoeic and
apnoeic sequences in sleep stage 2. There are fluctuations in oxygen saturation in response to periodic breathing, with delay of the transit time
from the lungs to the finger tip of the left hand.
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Many patients are likely to fall asleep in quiet or

monotonous situations or whenever they are not occupied

during the day. Despite apparently sleeping for many hours

during the night, patients with CSAS may not feel fully

refreshed. These symptoms impair patients’ quality of life and

may contribute to their sedentary life style.25 However, the

symptoms of CHF such as lethargy, impaired exercise capacity,

and paroxysmal nocturnal dyspnoea26 may overlap with the

symptoms of the sleep apnoea syndrome.27 Fatigue can also be

a side effect of cardiac medication—for example, beta

blockers—but hypersomnolence and excessive lethargy

should alert the clinician to the possibility of CSAS.

PATHOPHYSIOLOGY OF PERIODIC BREATHING
In healthy subjects the tidal volume and frequency of breath-

ing (minute ventilation) is principally controlled by the arte-

rial carbon dioxide tension (PaCO2), blood pH, and the arterial

oxygen tension (PaO2).28 These parameters are sensed in the

arterial blood by peripheral chemoreceptors located in the

carotid bodies and the aortic arch and are thought to react

rapidly to short term changes in them.29 The central chemo-

receptors are probably located at the ventral surface of the

medulla oblongata, behind the blood brain barrier, which

delays responses to changes in arterial blood gas tensions. It

has been hypothesised that the central chemoreceptors deter-

mine the long term target range of blood gases.30 Information

from these chemoreceptors is transferred to and processed in

the respiratory centre in the brain stem, adjacent to centres

which control the cardiovascular system. The relationship of

the respiratory centre to other brain centres which might also

influence the control of breathing—for example, circadian

rhythm, sleep-wake rhythm, sleep stage, voluntary

influence—is still being investigated.31 Further inputs into the

respiratory centre come from pulmonary J receptors which

measure stretch in the airways and the lungs, and from prop-

rioceptors in the respiratory muscles of the diaphragm and the

chest wall. Output from the respiratory centre is conducted by

efferent nerves to the respiratory muscles—the “ventilatory

pump”.32 33

The respiratory centre maintains blood gas tensions within

a tight range according to the metabolic demands of the body.

Periodic breathing reflects uncompensated instability of the

feedback control of ventilation. In general, feedback control

systems destabilise if their damping capacity or if other

mechanisms of keeping the balance are overridden. This can

occur if information transfer to the controller is delayed or

controller gain is altered.34 35

Delayed information transfer
Patients with left ventricular dysfunction and low cardiac

output typically have a prolonged circulation time. Pryor36

speculated about 50 years ago that this might lead to a time

delay between changes in blood gas tensions in the lung and

their detection in the central nervous system, adversely

affecting the control of ventilation. However, several recent

studies have not been able to show a predisposition or statisti-

cal association between low cardiac output and periodic

breathing in patients with CHF.14 19

Increased controller gain
Increased controller gain occurs if the sensitivity of chemo-

receptors is increased.37 Various hormones and drugs can alter

the human chemoreceptor sensitivity, including the endo-

genous catecholamines noradrenaline and adrenaline.38 39

Levels of both hormones are increased in the blood and urine

of patients with heart failure, probably as compensation for

cardiac pump failure.40 Increased circulating concentrations of

these catecholamines might increase the responsiveness of the

respiratory controller to carbon dioxide, leading to

hyperventilation.41 42 Latent hyperventilation during wakeful-

ness is a common finding in these patients and a relationship

between an abnormally increased ventilatory response to car-

bon dioxide during the day and periodic breathing during

sleep has been observed.43 Their PaCO2 is typically in the lower

normal range or even below, keeping ventilation closer to the

threshold of apnoea. Javaheri44 showed that patients with CHF

and CSAS had a significantly greater sensitivity to carbon

dioxide (by a factor of 2.3–3.5) than patients with CHF with-

out CSAS. In a study of 20 men with stable advanced CHF he

found a significant positive correlation between sensitivity to

carbon dioxide during wakefulness and the number of

episodes of apnoea and hypopnoea per hour of sleep. However,

this statistical observation does not provide physiological evi-

dence that a low daytime PaCO2 indicates enhanced chemosen-

sitivity.

Chemoreceptor gain can be diminished pharmacologically

by benzodiazepines, dopamine, codeine, morphine, and

alcohol,45 46 and codeine and morphine have been shown in

small clinical studies to reduce the amount of periodic breath-

ing in patients with heart failure.47

With apnoea or hypopnoea gas exchange in the lung is

reduced, resulting in a rapid fall in oxygen and a rise in carbon

dioxide to mixed venous levels. Arousals are frequently

observed towards the end of these respiratory events, trigger-

ing an increased respiratory responsiveness to carbon dioxide

and therefore reducing the damping of respiratory control.48

This induces an accelerating ventilatory drive producing tidal

volumes and frequencies that overshoot what was required to

normalise blood gases. The net effect is a reduction in PaCO2

below the apnoeic threshold, thereby precipitating the

apnoeic/hypopnoeic phase and thus perpetuating the cyclic

periodic breathing.49 The arousal related change in the drive to

breathe is likely to be very important in sustaining periodic

breathing, and provides an explanation for the ventilation

overshoot following apnoea and why periodic breathing is not

seen in deep sleep.

Episodes of periodic breathing are only transient phenom-

ena in many patients, whereas impaired cardiac function,

delayed circulation time, and increased chemoreceptor sus-

ceptibility are present chronically. This observation lends fur-

ther support for the hypothesis that other factors contribute to

the control of ventilation. Periodic breathing is usually seen

only during wakefulness and light sleep stages, and is mark-

edly attenuated or disappears during REM sleep. It is closely

related to a shift in sleep stages,50 confirming that other brain

centres also have a role in the control of ventilation.51 The res-

piratory centre also gains information from pulmonary vagal

afferents, transmitted by J receptors and C fibres which are

activated by tissue stretching.32 Solin and co-workers52

demonstrated an inverse relationship between awake pulmo-

nary capillary wedge pressure and awake PaCO2. If pulmonary

oedema activates tissue receptors, or if hyperventilation is

induced by impaired oxygen transfer in the congested lung,

Figure 3 Cumulative survival of patients in chronic heart failure
(CHF) with or without Cheyne-Stokes respiration (CSR). Reproduced
with permission from Hanly and Zuberi-Khokhar.19
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PaCO2 may fall below the apnoea threshold.53 A single deep
breath is a common finding at the onset of a sequence with
periodic breathing and, because during light sleep ventilation
is exclusively metabolically controlled, the fall in PaCO2 caused
by these events takes it below the apnoeic threshold initiating
periodic breathing (fig 4).54 55 Francis and co-workers56 recently
performed a quantitative general analysis of the dynamic
physiology governing cardiorespiratory stability in CHF. Their
mathematical model was clinically well validated and revealed
the increased chemoreflex gain, long lag to chemoreflex
response, low ventilation, low cardiac output, large difference
between alveolar and atmospheric carbon dioxide tensions,
and small lung volume as critical factors for the development
of oscillations in the feedback control of ventilation. However,
the model cannot explain why periodic breathing in many
patients is a temporary phenomenon. As outlined above, the
two key parameters—chemoreflex gain and processing of sig-
nals in the brain stem—might be related to the influence of
other brain centres.45 57

Haemodynamic factors presumably also play an important
role in the pathogenesis of periodic breathing.58 During sleep
the circulatory system is downregulated with a lower heart
rate, arterial pressure, and cardiac output.59 When the patient
is recumbent, an increase in preload may paradoxically reduce
cardiac output by increasing functional mitral regurgitation as
the mitral valve ring is stretched further. Alternatively, the
attendant increased filling into the right ventricle and the
redistribution and exacerbation of pulmonary oedema when
lying supine may lead to increased right ventricular preload

and afterload, respectively, thereby enhancing the reversed

Bernheim effect which compromises left ventricular filling

thus lowering cardiac output.60 The decreased cardiac output

renders the patient susceptible to periodic breathing. Increas-

ing cardiac output through vasodilator or positive inotropic

therapy may reduce the incidence of periodic breathing.61

CONSEQUENCES OF PERIODIC BREATHING
During hypopnoea and apnoea the declining intra-alveolar

oxygen content of the lung can cause an increase in right ven-

tricular afterload (Euler-Liljestarand mechanism).62 The end

systolic and end diastolic volumes of the right ventricle

increase, producing a gradual shift of the interventricular sep-

tum towards the left ventricle (reversed Bernheim effect). This

impairs ventricular filling and decreases the end diastolic vol-

ume of the left ventricle resulting in a diminished left

ventricular output.63 It can be speculated that this is

particularly likely if the myocardium is weakened by

cardiomyopathy or ischaemic heart disease.
Arousals may also be associated with direct activation of the

sympathetic nervous system.64 As a result, there is increased
noradrenaline spillover in many organs and raised adrenaline
and noradrenaline levels in the blood.65 The amount of
catecholamines and their metabolites in overnight urine
collections is proportional to the amount of periodic breathing
and the number of arousals in patients with CHF and periodic
breathing during sleep.66 Direct measurements of sympathetic
activity in peripheral nerve fascicles revealed a close correla-
tion between arousals in the cortical EEG and sympathetic
nerve discharge.67 Further markers of sympathetic activation
during arousal are a simultaneous increase in EEG activity,
heart rate, and arterial blood pressure.4 Detailed analysis of
heart rate variability around arousal reactions reveals cyclic
sympathetic activation and vagal withdrawal.68–70 Chronically
increased catecholamine concentrations resulting from struc-
tural impairment of the heart are therefore exacerbated by
periodic breathing. This might precipitate cardiac arrhythmias
and downregulate the expression of catecholamine receptors,
and could result in a vicious circle with continuously increas-
ing catecholamine levels.71 72 The unfavourable effects of
endogenous catecholamines in CHF are widely recognised.73

Recent studies have shown that catecholamines induce a
direct toxic effect on cardiac myocytes in vivo and subsequent
myocardial fibrosis74 and an enhancement of cardiac myocyte
hypertrophy.75

The most critical situation in periodic breathing is during
late apnoea when arousal occurs. At this time the heart is sup-
plied with the smallest amount of oxygen and sympathetic
activation with rapid release of catecholamines exposes the

Figure 4 Interactions between left
ventricular failure and instabilities in
ventilation. The inner part of the flow
chart shows the process during
periodic breathing. Modified from
Hall and Bradley.55
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heart to further stress. In patients with severe periodic

breathing several hundred of these episodes may occur during

one night. This has given rise to speculation that these repeti-

tive increases in cardiac stress might contribute to the poorer

prognosis of patients with periodic breathing.76

DIAGNOSIS
Full polysomnography is regarded as the “gold” standard for

diagnosing CSAS. The typical ventilatory pattern of periodic

breathing is identified visually according to the guidelines of

the American Thoracic Society.3 It can usually be dis-

tinguished from the obstructive sleep apnoea syndrome which

is characterised by cessation of oronasal air flow with persist-

ence of thoracoabdominal ventilatory efforts. However, in

some cases it can be difficult to exclude secondary airway col-

lapse, which might occur in the late phase of a central apnoea.

Patients with periodic breathing must be distinguished from

those with mixed apnoeas of primarily obstructive aetiology.

Obstructive apnoeas are sometimes followed by reflex central

apnoeas, superficially mimicking primary central apnoea.77

Several indices describing the severity of the disorder have

been established, such as the duration of periodic breathing as

a proportion of the total sleep time, the apnoea-hypopnoea

index (AHI) which calculates the mean number of events in 1

hour of sleep, the arousal index, and the oxygen saturation. Up

to 15 apnoeic or hypopnoeic episodes per hour of sleep can be

considered as normal or mild, 15–30 episodes per hour reflect

moderate sleep apnoea, and an AHI of >30 indicates severe

sleep apnoea.78

Screening systems which measure a limited number of

sleep parameters and interpret the sleep study automatically

without allowing direct visualisation of the raw data are not

sufficient diagnostic tools for CSAS.79

TREATMENT
Before considering specific treatment for periodic breathing,

medical treatment of the underlying heart disease must be

optimised.80 81 Improvement in cardiac output has been shown

to reduce periodic breathing.27 82 Other confounding condi-

tions which might influence breathing during sleep (such as

neurological disorders or drugs) must be ruled out.

Treatment for periodic breathing includes nocturnal non-

invasive ventilation and oxygen application via nasal cannulae

(table 1).83–90 Drugs such as theophylline, morphine deriva-

tives, and supplementation of inhaled air with 3% carbon

dioxide have been applied under experimental conditions in

small studies.91–94 The prescription of sedatives for patients

with any form of sleep disordered breathing should be

Table 1 Key references for pathophysiology and treatment of central sleep apnoea syndrome (CSAS)

Reference Summary Comment

Naughton et al83 Controlled study with a CPAP treatment period of 1 month. Pressure: 10.2 (0.5) cm
H2O. In a subgroup of 12 patients CPAP significantly reduced the frequency of
apnoeas and hypopnoeas, increased the oxygen saturation and PCO2, and
normalised minute volume during sleep

Comprehensive study suggesting CPAP as an
additional treatment option for chronic heart
failure patients

Naughton et al84 Randomised controlled study with a CPAP treatment period of 3 months. Subjects:
12 patients in the control group (no CPAP) and 12 patients in the treatment group
(10.1 (0.5) cm H2O). Significant improvements were found for the following
parameters: apnoeas and hypopnoeas during sleep, arousals during sleep, left
ventricular ejection fraction during wakefulness, symptoms of fatigue, and disease
mastery

Extension of the study above, reaching good
quality standards for clinical trials, and
confirming CPAP as a beneficial treatment
option for the CSAS

Javaheri85 A one night CPAP treatment was performed in 29 patients with CHF. 16 responded
to treatment, determined by a significant reduction in apnoeas, hypopnoeas,
arousals, percentage of total sleep time below a saturation of 90%, and lowest
saturation. 13 did not respond to CPAP Responders had a highly decreased
frequency of premature ventricular contractions and couplets

Javaheri identified responders and a high
proportion of non-responders in his study
population. The results in responders are
similar to the results in the studies above

Willson et al86 Eleven patients were started on a 3 month home trial with nocturnal controlled nasal
intermittent positive pressure ventilation (nIPPV). Ventilatory parameters were set in
such a way that the PCO2 was maintained at or slightly below the patient’s awake
level. nIPPV abolished periodic breathing in all patients with a significant
improvement in the sleep architecture, frequency of apnoeas and hypopnoeas,
arousals, and a significant increase in left ventricular ejection fraction. Long term
domiciliary usage of the device was poor; only 6 patients completed the 3 month
trial

Volume controlled ventilation and slight
hyperventilation does not seem to be an
adequate treatment option for the majority of
patients

Hanly et al87 Nine patients were included in a randomised placebo controlled crossover study
administering 2–3 l/min oxygen or compressed air for one night. Oxygen reduced
Cheyne-Stokes respiration by 50%, mainly in stage 1 sleep, with no significant
changes in the other sleep stages. The sleep architecture was improved, the same
was found for apnoeas, hypopnoeas, and arousals

Low flow oxygen is effective in reducing
apnoeas and hypopnoeas in patients with
CHF, but its therapeutic benefit is much lower
than CPAP

Andreas et al88 Similar study design and results to Hanly’s study, but exercise performance,
measured as peak oxygen uptake, improved significantly in the 22 participants
after 1 week of treatment with 4 l/min oxygen during sleep. Cognitive function
improved as well, but no change was found in daytime symptoms

This is the only study evaluating exercise
capacity, an important parameter for patients
after treatment of central sleep apnoea

Franklin et al89 Prospective intervention study of 20 patients, 16 with chronic heart failure. During
one treatment night oxygen doses had been titrated individually, and in 17 of 20
patients the frequency, but not the duration, of central apnoeas was reduced
significantly. The arousals were aalso reduced, but the effect on total sleep time
and daytime sleepiness was very variable

The interindividual differences of the effect of
oxygen was very variable in this study,
despite an individual titration of oxygen flow.
Oxygen eliminated some central apnoeas,
whereas the majority of events remained
unchanged

Xie et al90 Six patients with idiopathic CSAS had been treated with 3% CO2 in their inhalation
gas or with a full face mask, enlarging ventilatory dead space. PCO2 increased
between 1.3 and 2.4 mm Hg and apnoeas and hypopnoeas were virtually
eliminated

Hyperventilation below the threshold of
apnoea plays a key role in central apnoeas.
Increasing PCO2 in patients with CSAS seems
to make these events less likely

CPAP = continuous positive airway pressure; PCO2 = carbon dioxide tension; CSAS = central sleep apnoea syndrome; CHF = congestive heart failure.
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discouraged. In these patients slow wave and REM sleep,

which are the refreshing sleep stages, are already reduced due

to frequent arousals. The use of benzodiazepines in particular

can further reduce slow wave and REM sleep, resulting in

worsening of daytime symptoms. By blunting arousal re-

sponses they may worsen nocturnal gas exchange.95

In the absence of major prospective randomised controlled

trial data, the indications for treatment remain to be defined,

but it should be considered when there are frequent and

severe oxygen desaturations during sleep resulting from

recurrent hypopnoeas or apnoeas, a high prevalence of arous-

als and sympathetic nervous system activation, and severe

disruption of sleep architecture (reduced amount of slow wave

or REM sleep) with subsequent daytime hypersomnolence.96

Oxygen
The application of oxygen at a rate of 4 l/min via nasal cannu-

lae has been shown to influence nocturnal periodic breathing.

Some investigators have reported an almost complete

abolition of periodic breathing and an improved mean

overnight oxygen saturation,89 whereas others observed only a

partial (approximately 50%) reduction in the number of

hypopnoeas and apnoeas.87 97 Andreas et al88 found a significant

increase in exercise tolerance (peak oxygen consumption) in a

cohort of 22 heart failure patients with periodic breathing

during sleep after 1 week of nocturnal oxygen therapy. The

same study revealed a significant correlation between the

increase in peak oxygen consumption during ergospirometry

and a decrease in CSR, in arousals, and in the amount of time

spent in bed with an oxygen saturation <90%. Staniforth and

colleagues98 conducted a randomised, double blind, crossover

study comparing oxygen with room air in 11 patients with

stable CHF. Four weeks of nocturnal oxygen treatment

reduced the amount of apnoeas and periodic breathing during

sleep, as well as the nocturnal urinary noradrenaline

excretion. No significant changes in sleep quality, patient

symptoms, or cognitive function were identified. It has been

postulated that the limited effect of high oxygen concentra-

tions is due to enhanced cellular metabolism in the peripheral

chemoreceptors and a subsequent alteration of their setting.99

Continuous positive airway pressure (CPAP)
CPAP or non-invasive ventilation has been used for the treat-

ment of patients with periodic breathing during sleep.

Although the mechanism of action of CPAP is not fully under-

stood in patients with CSAS, it has been shown to be an effec-

tive method of treatment.100 It can be difficult to introduce

CPAP in some patients,101 but a relatively low pressure level of

3.7 mm Hg has been shown to be effective in adults with a

normal body mass index.102 It stabilises the patient’s ventila-

tion and reduces the amount of periodic breathing, apnoeas,

hypopnoeas, arousals, and the number of oxygen desatura-

tions during sleep.84 The mean oxygen saturation increases

and the transcutaneous carbon dioxide pressure increases

back into the normal range.83

Studies of activation of the sympathetic nervous system

during treatment with CPAP have shown a significant reduc-

tion in the excretion of noradrenaline, but not of adrenaline, in

overnight urine collections.66 CPAP also has direct haemo-

dynamic effects, increasing the intrathoracic pressure and

thereby reducing cardiac afterload and preload by reducing

venous return to the right atrium. This results in lower diasto-

lic filling pressures and more effective pump function.103 104

CPAP recruits atelectatic lung areas, improving oxygen trans-

fer in the lungs, and the higher intrapulmonary oxygen

content might prevent recurrent rises of right ventricular

afterload and subsequent pulmonary hypertension.105 How-

ever, a recently published randomised study investigating

patients with CHF with and without periodic breathing

revealed an improvement in left ventricular ejection fraction

and in mortality in patients with periodic brething only, sug-

gesting that any beneficial effect from CPAP is a consequence

of an improvement in periodic breathing.106

In summary, current therapeutic approaches have focused

on correction of the pathological breathing pattern. The effect

of oxygen seems to be less successful than CPAP or

non-invasive ventilation. There are no conclusive studies of

the long term outcome of any treatment of CSAS. Many

investigators prefer CPAP for treatment of periodic breathing

because of the possible benefit of its direct mechanical effects

on the failing heart.107 However, the development of new

treatment strategies must be encouraged to find new

approaches to the instability of the control of breathing in

some patients with congestive cardiac failure.108 These may

include different forms of non-invasive ventilation86 or drugs

influencing the central control of carbon dioxide.47

CONCLUSIONS
CSAS with periodic breathing occurs frequently but is often

unrecognised in patients with advanced CHF. In many

patients, daytime fatigue and impaired physical performance

is not just a symptom of the heart disease or side effect of

treatment, but an indicator of sleep disordered breathing. The

prognosis of patients with CHF seems to be significantly worse

if CSAS is present. The causal relationship between CHF and

CSAS is not fully understood, but delayed circulation time,

increased chemoreceptor sensitivity to carbon dioxide, input

into the respiratory centre from other brain centres and from

peripheral receptors might have pathophysiological import-

ance. Treatment options include CPAP and supplemental oxy-

gen. CPAP is the most widespread treatment but, because of

relatively poor patient acceptance in some studies, more

sophisticated ventilatory support strategies need to be

developed. Adequately powered prospective randomised con-

trolled trials with survival and health status as end points are

needed to establish whether the correction of sleep related

abnormalities of breathing in patients with heart failure really

does improve outcome.
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