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Introductory article

Immediate and long term eVects of weight reduction in obese
people with asthma: randomised controlled study

B Stenius-Aarniala, T Poussa, J Kvarnstrom, E L Gronlund, M Ylikahri, P Mustajoki

Objective: To investigate the influence of weight reduction on obese patients with asthma.
Design: Open study, two randomised parallel groups. Setting: Private outpatients centre,
Helsinki, Finland. Participants: Two groups of 19 obese patients with asthma (body mass
index (kg/m2) 30 to 42) recruited through newspaper advertisements. Intervention: Super-
vised weight reduction programme including 8 week very low energy diet. Main outcome
measures: Body weight, morning peak expiratory flow (PEF), forced vital capacity (FVC),
forced expiratory volume in one second (FEV1); and also asthma symptoms, number of
acute episodes, courses of oral steroids, health status (quality of life). Results: At the end
of the weight reducing programme, the participants in the treatment group had lost a mean
of 14.5% of their pretreatment weight, the controls 0.3%. The corresponding figures after
one year were 11.3% and a weight gain of 2.2%. After the 8 week dieting period the differ-
ence in changes in percentage of predicted FEV1 from baseline in the treatment and con-
trol groups was 7.2% (95% confidence interval 1.9% to 12.5%, P=0. 009). The
corresponding difference in the changes in FVC was 8.6% (4. 8% to 12.5%, P<0.0001).
After one year the differences in the changes in the two groups were still significant: 7.6%
for FEV1 (1. 5% to 13.8%, P=0.02) and 7.6% for FVC (3.5% to 11.8%, P=0.001). By the
end of the weight reduction programme, reduction in dyspnoea was 13 mm (on a visual
analogue scale 0 mm to 100 mm) in the treatment group and 1 mm in the control group
(P=0.02). The reduction of rescue medication was 1.2 and 0.1 doses respectively (P=0.03).
After one year the differences in the changes between the two groups were –12 for symp-
tom scores (range –1 to –22, P=0.04) and –10 for total scores (–18 to –1, P=0.02). The
median number of exacerbations in the treatment group was 1 (0–4) and in the controls 4
(0–7), P=0.001. Conclusion: Weight reduction in obese patients with asthma improves lung
function, symptoms, morbidity, and health status. (BMJ 2000;320:827–832)

c BACKGROUND

Obesity and asthma are both chronic conditions aVecting millions worldwide. Over the
last 20 years there has been a rapid increase in the prevalence of both of these
conditions. Traditionally, adult overweight has been defined as a body mass index (BMI)

of 25–29.9 kg/m2. Adult obesity is represented by a BMI of >30.0 kg/m2. In the USA between
1960 and 1994 the prevalence of overweight has increased from 30.5% to 32% and obesity has
increased from 12.8% to 22.5%.1 The rise in obesity has been especially notable in women where
the prevalence has increased from 15.1% to 24.9%.1 Most of these changes in prevalence
occurred between 1976 and 1994. In 1995 the total cost of obesity in the USA amounted to
$99.2 billion, of which $51.6 billion were direct medical costs associated with diseases
attributable to obesity.2 Globally, obesity has also increased, with an estimated 300 million obese
adults worldwide in the year 2000 compared with 200 million in 1995.3 Although traditionally
thought of as a problem of westernised countries, an estimated 115 million obese adults reside in
developing countries.3

The prevalence of adult asthma is also increasing in the USA. Between 1980 and 1994 the
prevalence of self-reported asthma increased from 30.7 to 53.8 per 1000.4 There has also been a
disparate increase in the prevalence of asthma in women, with an increase of 80% in women
between 1982 and 1992 but by only 29% in men. The attributable cost related to asthma in the
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USA was estimated at $6.1 billion in 1990.5 Although lack of a
standardised definition of asthma precludes precise prevalence
trends in older adults, the worldwide prevalence of asthma also
continues to rise in children and young adults.6 7

Given the parallel increases in obesity and asthma, it is not
surprising that the prevalence and incidence of asthma and its
related symptoms and phenotypes have been increasingly
associated with BMI and obesity. The cross sectional diagnosis
of asthma has been associated with obesity in both children8–10

and adults.11–16 Several of these studies noted the relationship
only in women12 13 15 or men.16 Similarly, increasing BMI has
been associated with asthma symptoms,9 14 15 17–19 airways
hyperresponsiveness,20–22 and atopy.22 23

The incidence of asthma has also been related to
pre-existing obesity. In a prospective study of 85 911 women
in the Nurses’ Health Study, 1596 incident cases of doctor
diagnosed asthma were identified. Using a multivariate
analysis, the relative risk of asthma was 2.7 (95% CI 2.3 to
3.1) for women with a BMI of >30 kg/m2 compared with
those in the reference group (BMI 20.0–22.4 kg/m2).24

Furthermore, increasing weight gain in these women led to a
higher risk of asthma. Women who had gained 10–20 kg
since the age of 18 had a relative risk of 1.4 (95% CI 1.2 to
1.7) of developing asthma compared with women whose
weight remained stable, while those who had gained more
than 25 kg since the age of 18 had a much higher relative risk
of developing asthma of 2.7 (95% CI 2.2 to 3.4).24 A recent
abstract focusing on the Growing Up Today cohort of
children noted 140 cases of incident asthma in boys over a 1
year period and 160 cases of incident asthma in girls.
Comparing the highest to the lowest quintile of BMI, the
relative risk of asthma during that time was 2.3 (95% CI 1.3
to 4.1) in boys and 1.5 (95% CI 0.9 to 2.6) in girls.25

Introductory article
The study by Stenius-Aarniala and colleagues26 is the first of
its kind to evaluate the eVects of medical weight loss on a
variety of asthma outcome measures. Using a non-blinded,
randomised clinical trial, obese subjects with asthma from
Helsinki, Finland were assigned to either an intensive dietary
programme or to a control group. Asthma was carefully
defined during a run in period by the presence of either
diurnal peak flow variability or by a bronchodilator response
of at least 15%. The mean change from baseline forced
expiratory volume in 1 second (FEV1) and forced vital
capacity (FVC) was significantly greater at all time periods
up to 1 year following the 8 weeks of dieting in the treatment
group compared with the controls. While such a consistent
relationship was not found for symptoms, at various times
during follow up the treatment group did demonstrate less
dyspnoea, use of rescue medications, and overall symptom,
impact, activity, and total health status scores. At the end of
the 1 year follow up period the treatment group continued to
have fewer symptoms and better total health status scores
than the controls.

The strength of the study lies in the success of the weight
loss programme overall (mean weight loss of 14.2 kg after the
dieting period and 11.1 kg after 1 year) and in the
consistency of this relationship to the follow up levels of
pulmonary function and symptoms in a randomised clinical
trial. Ascertainment and follow up were 100% and data were
analysed by intention to treat, minimising biases due to
non-compliance. There are a few limitations to this study.
After extensive exclusion criteria, the remaining sample size
was small and randomisation resulted in diVerences in
pulmonary function and sex at baseline. While sex was

addressed by evaluating the spirometric outcomes from the
change in the percentage predicted, no attempt was made to
adjust for baseline level of pulmonary function. Given
non-blinding, bias could have played a role with respect to
recall during the questionnaires and during administration of
spirometric tests. Finally, it would have been beneficial to
have evaluated pulmonary function as it pertains specifically
to asthmatic subjects. Even without testing for airways
hyperresponsiveness, peak flow variability and bronchodilator
responsiveness, which were established at baseline, could
have been evaluated as primary outcomes. The changes seen
in this study were a parallel decrease in FEV1 and FVC,
which might be seen in any study of weight loss in obese
individuals and may not be specific for obese asthmatic
patients. Nevertheless, by noting weight dependent changes
in pulmonary function, symptoms, and quality of life that
persist over time, the authors have added insights to the
pathophysiological relationship between obesity and asthma.

Other evidence for a temporal relationship
between weight loss and asthma
Several other studies have evaluated the relationship between
weight loss and asthma. Two studies27 28 which focused on
asthma medication usage before and after gastric bypass
surgery reported a decrease in postoperative medication
usage of 50% and 100%, respectively. Dixon et al29 evaluated
symptom scores from 32 obese asthmatic subjects before and
after gastric bypass surgery; mean BMI decreased from
45.7 kg/m2 preoperatively to 32.9 kg/m2 at the time of follow
up and 26 of the 32 patients reported decreased medication
usage postoperatively. The mean scaled asthma symptom
score decreased from 44.5 to 14.3 (p<0.001). Of the 10
patients with “severe” asthma before surgery, none remained
in this category at follow up. Similar improvements in
symptoms, medication usage, and asthma severity were noted
postoperatively in a study of 40 obese asthmatics by
Macgregor and Greenberg.30 Weight loss has also been
associated with improvement in pulmonary function in one
other study of medical weight loss in obese asthmatics.31 In
addition to the parallel increase in FEV1 and FVC noted in
the introductory article, this study added the significant
contributions of noting both decreased peak flow variability
and decreased static airways resistance in these asthmatics
after weight loss. Overall, reductions in obesity, both
medically and surgically, have resulted in improvements in
asthma symptoms, medication usage, and severity, and
improvements in multiple aspects of pulmonary function in
every study that has evaluated these outcomes.

Causal hypotheses
The consistency of the relationship, the temporal association,
the dose-response curve, and the association with
intermediate phenotypes has caused at least one author to
suggest that there could be a causal relationship between
obesity and the onset of asthma.32 In order to implicate a
causal hypothesis, however, one or more plausible biological
mechanisms must be established. Although few studies have
specifically addressed this question, specific mechanisms
relevant to this association can be easily elicited. Obesity may
directly aVect the asthma phenotype by direct mechanical
eVects, by enhancing the immune response, through related
genetic mechanisms, and by sex specific influences
(hormones). Alternatively, obesity may be closely linked to
other environmental factors such as physical activity, diet,
and birth weight. These environmental influences, in
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combination with genetic susceptibility, may then lead to
enhanced susceptibility to asthma (box 1). The salient
features of these mechanisms will be reviewed below.

Mechanical effects of obesity
Physically, obesity may aVect asthma directly by decreased
tidal excursion leading to smooth muscle latching and
indirectly by enhancement of gastro-oesophageal reflux. The
most consistent alteration in lung function found in obesity is a
reduction in functional residual capacity (FRC) due to the
eVect of the abdominal contents on the position of the
diaphragm.33 34 Obesity has also been associated with
decrements in tidal volume35 which fails to increase during
times of dynamic stress such as exercise.36 37 Moreover, in
morbid obesity, the majority of tidal breaths are taken around
the closing volume.38 39 Decrements in FRC and low tidal
volumes infer small cycling rates, resulting in the conversion of
airway smooth muscle from rapidly cycling actin-myosin cross
bridges to slowly cycling latch bridges (fig 1).40–42 The
attainment of the latch state has been hypothesised to be the
reason that obstruction persists in asthmatic airways.40 42 The
latch state has also been postulated to result in increased
airways responsiveness.40 42 Furthermore, these eVects may be
enhanced by breathing around the closing volume.42–45 The
latch state may thus explain the observations that decrements
in FRC, as occur in obesity, have been tightly correlated with
increased airways resistance34 46 and responsiveness to
methacholine.44

In addition to its eVects on FRC, tidal volume, and closing
volume, obesity has been associated with decrements in
forced expiratory flow in the mid portion of FVC (FEF25–

75).47 48 In turn, the FEF25–75 when related to vital capacity
(FEF25–75/FVC) improves significantly with weight loss.31 The
FEF25–75/FVC ratio has also been independently associated
with methacholine responsiveness of the airways.49

Gastro-oesophageal reflux (GER) is commonly associated
with asthma. The estimated prevalence of GER in asthmatics
is 60–80% in adults and 50–60% in children.50 Possible
mechanisms for GER related asthma symptoms include acid
induced bronchoconstriction, either by direct
microaspiration or by vagally mediated reflex.51 Medical or
surgical treatment of GER results in an improvement in
asthma symptoms in about 70% of patients.52 Obesity has
been frequently cited as an independent risk factor for GER
and GER symptoms,53–57 although isolated studies have
refuted this.58 Mechanically, this eVect may be mediated via
increased abdominal pressures which increase the
gastro-oesophageal pressure gradient.59 60 Both medical61 and
surgical57 weight loss regimens have been associated with
improvement in GER symptoms. These findings have led to
the speculation that GER might mediate the relationship
between asthma and obesity.27 29

Immune modification by obesity
There is increasing evidence in the literature that obesity is
an inflammatory state. Studies to date have shown
associations between tumour necrosis factor alpha (TNFá),
interleukin 6 (IL-6), IL-1â, and C-reactive protein and the
obese state.62–66 Moreover, IL-6 and TNFá have been found
to be constitutively expressed by adipocytes and to correlate
with total fat mass.67 68 Finally, leptin—the protein product of
the putative ob gene—is increased in the majority of obese
individuals, probably due to insensitivity to endogenous
leptin.69 In animal models exogenous leptin has been found
to increase macrophage phagocytosis as well as to increase
production of TNFá, IL-6, and IL-12 from
lipopolysaccharide stimulated macrophages.70

Clearly, asthma is also a disease characterised by
inflammation. While most of the recent focus has been on
IL-4 and IL-5 as the primary cytokine mediators of extrinsic
(allergic) asthma, there remains a substantial body of
literature dedicated to the role of other cytokines in this
disease. A brief review of the inflammatory markers noted in
obesity and their role in asthma follows. Although leptin has
not been studied in asthma, and C-reactive protein is
generally considered a non-specific marker, IL-1 activity has
been shown to increase in asthma.71 IL-1â has, in turn, been
associated with induction of increased levels of IL-5 from
CD4+ T cells.72 In asthma, levels of circulating TNFá are
increased and, upon exposure to allergens, the production of
TNFá further increases.73 TNFá increases IL-4 mRNA
production while IL-4 subsequently decreases TNFá
production.74 TNFá also increases production of IL-5 by
bronchial epithelial cells.75 IL-6 production is increased in
asthma and has been associated with histamine, IL-4, TNFá,
and IL-1 stimulation.73 76 It has been postulated that IL-6 is
responsible for the modulation of IgE production by IL-4.77

Enhancement of IL-5 production has also been associated
with IL-6 levels.72 Finally, it has been demonstrated that IL-6
causes substantial subepithelial fibrosis in animal models and
may be a key modulator of airway remodelling in asthma.78

Genetic effects of obesity
Extensive genetic epidemiological studies individually
focusing on asthma or on obesity have been performed in
recent years. Reviews of the genetic epidemiology of these

Mechanisms relating obesity to asthma

Mechanical
c Alterations in tidal stretch leading to latch
c Gastro-oesophageal reflux

Immune modification
c TNFα
c IL-1β
c IL-6
c Leptin

Genetic effects
c Common candidate genes (TNFα, β2 adrenergic receptor)
c Candidate regions (5q, 6p, 11q, 12q)
c Obesity candidate genes related physiologically to asthma
c Sex
c Airway size differences
c Inflammatory mediators enhanced in women
c Oestrogen
c Gene × environment interactions
c Physical activity
c Diet
c Developmental
c Fetal programming

Latch

↓ FRC

↓ VT

Airways
closure

Persistent
airflow

obstruction

↓ Smooth
muscle
stretch

↑ Airways
reactivity

Figure 1 The Latch hypothesis. Obesity leads to decrements in
functional residual capacity (FRC) and tidal volumes (VT), resulting
in dynamic decreases in smooth muscle stretch. The resultant
latching of the smooth muscle leads to enhanced airways
reactivity and irreversibility of obstruction. These effects may be
enhanced by breathing around the closing volume, which is
characteristic of morbid obesity.
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complex genetic traits are readily available.79–86 There are
several ways in which obesity genes might influence the
asthma phenotype. Firstly, genetic studies of each of these
individual disease states have revealed several candidate
genes that have been linked or associated with both obesity
and asthma. Secondly, other obesity candidate genes are
clustered in chromosomal regions that have been linked to
asthma. Their close proximity may indicate increased
potential for inheritance of these two traits simultaneously.
Finally, candidate genes for obesity may encode protein
products that may directly influence the asthma state, such as
the cytokines noted in the previous section.

There are two genes in which linkage or strong associations
have been found for both the obesity and asthma disease
phenotypes. These singular candidate genes include genes
encoding for the â2 adrenergic receptor and TNFá. The gene
encoding for the â2 adrenergic receptor is located on
chromosome 5q31–q32. Polymorphisms of the â2 adrenergic
receptor are thought to be associated with specific asthma
phenotypes and response to treatments. In studies to date, the
Gln27→Glu polymorphism of this receptor has been found to
be associated with increased serum IgE levels87 and a
protective eVect against the methacholine challenge.88 The
Agr16→Gly polymorphism has been associated with nocturnal
asthma89 and treatment response to â agonist agents.88 90

In obesity it is felt that genes involved in the regulation of
catecholamine function may be of great importance because
of the role they play in energy expenditure, both as hormones
and as neurotransmitters. The Gln27→Glu polymorphism of
the â2 adrenergic receptor has been found to be significantly
associated with overall obesity in a number of studies91 92 as
well as with obesity in sedentary men.93 Although the
Arg16→Gly polymorphism has not directly been associated
with obesity, the Gly16 allele has been shown to be
associated with a greater ability to lose weight than in those
without the mutation.94

The TNFá gene complex is located on chromosome
6p21.3. The TNFá-30895 96 and LTá NcoI95 polymorphisms
have each been associated with asthma. The LTá NcoI/
TNF-308*2 extended haplotype, both individually97 and in
conjunction with the HLA-DRB1*02 allele,98 has been
associated with the prevalence of asthma in an Australian
population. The latter haplotype98 and the isolated
TNF-308*2 polymorphism99 have also been associated with
airway hyperresponsiveness. Concurrently, the TNFá gene
has been linked to obesity in a population of Pima Indians.100

Additionally, polymorphisms at the TNFá-308 region have
also been associated with BMI101 and obesity.102

Genome wide scans of asthma to date have noted several
consensus regions of linkage.103 These regions include
portions of chromosomal areas of 5q, 6p, 11q, and 12q.
Comparative analysis of these positional loci for asthma with
those of candidate genes for obesity shows considerable
overlap (table 1). This supports the hypothesis that the
underlying genetic susceptibility to asthma may be shared
with that for obesity.

Two positional candidate obesity genes with potential
physiological relevance to asthma will be mentioned. The
glucocorticoid receptor gene is located on chromosome
5q31–32. Polymorphisms in the glucocorticoid receptor gene
have been associated with obesity, both at the Asn363→Ser
locus104 and at the BclI restriction site.105 106 Markers
surrounding this gene have also been linked to obesity in a
small study of obese French families.107 In asthma, increases
in the numbers of the glucocorticoid receptor beta have been
associated with increased disease severity and fatality.108 109

This, along with the prominent therapeutic role played by
steroids in asthma, has led to the proposal of the
glucocorticoid receptor gene as a candidate gene for
asthma84 110 and asthma gene therapy.111 The gene encoding
insulin-like growth factor 1 (IGF-1) is located on
chromosome 12q23. The 5' region of this gene contains a
dinucleotide (CT)n repeat. Comparison of the homozygous
wild type (189 bp) IGF-1 gene with persons containing at
least one longer allele has shown a significant association
between baseline percentage body fat, fat free mass, and
change in fat free mass with exercise and the IGF-1
polymorphic alleles.112 This same study evaluated sibling
pairs and noted a significant linkage of the IGF-1 region with
change in fat free mass.112 In the airway, bronchial epithelial
cells have been found to produce IGF-1 after injury,
stimulating myofibroblast proliferation,112 and to act as a
mitogen for airway smooth muscle cell proliferation when
co-cultured with leukotriene D4.113 This has led to the
hypothesis that IGF-1 may be of importance in the airway
remodelling characteristic of chronic asthma.113–115

Sex specific effects of obesity
The association between obesity and asthma has been
particularly strong in adult women and postpubertal girls. In
a survey of 19 126 Dutch adults, women with a BMI of >30
had 1.8 times the risk of having asthma than non-obese
women.12 This relationship was not seen in men. Other
studies which have found diVerences between men and
women in the association between asthma and BMI have
reported that the association is found exclusively in
women13 22 or is stronger in women than in men.15 In a study
of 16 862 children aged 9–14, BMI correlated with the
prevalence of asthma in both boys and girls. Interestingly,
asthma risk was negatively related to Tanner stage in boys
(RR of 0.3 for stage V compared with stage I) but was
positively related to Tanner stage in girls (RR of 1.6 for stage
V compared with stage I).25

The sex diVerences noted in obese asthmatic subjects may
be just a reflection of the increased incidence116 and
prevalence4 117 118 of asthma in women of any size. This has
been postulated as a primary airway size eVect.116 However,
women also appear to have a higher prevalence of airway
hyperresponsiveness than men119 120 which persists despite
adjustment for airway size. Although the mechanisms behind

Table 1 Some asthma linkage loci (associated asthma candidate
genes) and obesity candidate genes in the same regions

Asthma consensus loci
Obesity candidate gene
loci

5q23-31 (IL-4, IL-5, IL-9, GMCSF,
β2AR, CD14)

5q22.3 (ISL1)

5q31 (GRL)
5q32-34 (β2AR)

6p21.3-p23 (HLA, TNFα) 6p21.2-p21.1 (GLO1)
6p21.3 (BF)
6p21.3 (TNFα)

11q13 (FCERB, CC16) 11q13 (UCP2)
11q13 (UCP3)

12q14-q24.2 (IFNγ, LTA4H, NOS1) 12q13 (STAT6)
12q22-q24.1 (IGF1)
12q24 (CD36L1)

IL = interleukin; GMCSF = granulocyte monocyte colony stimulating factor;
β2AR = β2 adrenergic receptor; ISL1 = islet cell 1; GRL = glucocorticoid
receptor; HLA = human leucocyte antigen; TNFα = tumour necrosis factor
alpha; GLO-1 = glyoxalase; BF = B factor, properdin; FCERB = IgE fc recep-
tor beta; CC16 = Clara cell 16; UCP = uncoupling protein; IFNγ = interferon
gamma; LTA4H = leukotriene A4 hydroxylase, NOS1 = neuronal nitric oxide
synthase; STAT6 = signal transducer and activator of transcription ; IGF =
insulin like growth factor; CD36L1 = CD36 antigen-like.
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these associations have yet to be clarified, obesity may
amplify these associations via the mechanical eVects noted
above. Similarly, leptin levels121–123 are higher in women than
in men and may portend to an enhanced inflammatory state.

One other potential reason for the sex diVerence noted is
that of the sex hormone oestrogen. Postmenopausal hormone
replacement therapy (HRT) has been associated with a
significantly increased relative risk of incident asthma in
women (RR 1.49 for ever using HRT v never using HRT).124

In obesity, although androgen levels are increased, peripheral
aromatisation of androstenedione to oestrone and
testosterone to oestrogen occurs within the stroma of adipose
tissue.125 Combined with decreased sex hormone binding
globulin found in obesity, this results in an oestrogen
amplification eVect on sensitive tissues.125 During the
menstrual cycle, peak oestrogen levels have been associated
with increased symptoms and decreased pulmonary function
in asthmatic women.126 Recent data have shown that
oestrogen administration results in a shift in the
immunological reaction from a Th1 to a Th2 type.127 Other
studies have demonstrated that oestrogen increases IL-4 and
IL-13 production from blood monocytes128 and increases
eosinophil recruitment129 and degranulation.130 These changes
exemplify those typically found in asthma.

Gene × environment interactions in the
asthma-obesity relationship
Despite numerous genetic and environmental associations
relating asthma to obesity, it is unlikely that the noted
relationship is due to any one single factor. Rather, it is the
interactions between genes and environment131 that may best
explain the variability of the expressed obese asthmatic
phenotype. We will briefly touch upon the potential
aetiological roles of physical activity, diet, and the in utero
environments in the subsequent development of obesity and
asthma.

Physical activity and asthma
Studies of the association between obesity and asthma have
noted the expected negative relationship and close
correlation between physical activity and body mass
index.24 132 Several authors have speculated that the
relationship between obesity and asthma may just be a
reflection of a sedentary lifestyle.10 133 Lack of full lung
expansion associated with exercise may lead to increased
airways responsiveness.45 134 In recent studies, increased
physical fitness has been associated with decreases in the
relative risk of incident asthma in schoolchildren135 and in
twins discordant for the diagnosis of asthma.136 In the study
of schoolchildren, decreased physical fitness was also
significantly correlated with the subsequent development of
airways hyperresponsiveness to methacholine.135

While the level of physical activity may be an independent
risk factor for the development of asthma, it may also interact
with genetics in its association with asthma. There are two
possible mechanisms for such gene × environment interactions
in the relationship between obesity and asthma (fig 2). Firstly,
environmental factors such as physical activity may interact
with genetic predisposition to produce obesity which
subsequently leads to the development of asthma via the
pathways described above. Alternatively, the same
environmental and genetic influences may result in the
independent development of both asthma and obesity. The
association between asthma and obesity may then be further
influenced by the mechanisms previously described. As an
example, in a recent abstract137 BMI and the Arg16→Gly poly-

morphism of the â2 adrenergic receptor were associated with
incident asthma, but only in a subset of sedentary women.

Diet and asthma
The relationship between diet and obesity is an obvious one.
Interestingly, obese subjects may consume no more calories
than lean controls.138 Analysis of the NHANES I data based
on 24 hour food recalls actually found a negative correlation
between overeating and overweight.139 However, the type of
food consumed by obese individuals tends to be of poor
nutritive value138 and to be rich in total fat.140 141 Levels of
vitamins A, C, E, carotenes, riboflavin, pyridoxine, zinc, and
magnesium have been noted to correlate negatively with
body fat.142 143 Paradigms for the treatment of obesity include
decreasing total fat intake and ensuring adequate intake of
vitamins and minerals.2

The dietary factors mentioned above may aVect asthma as
well. Total fat intake has been associated with the diagnosis
of asthma.144 145 Zinc and magnesium deficiencies have been
associated with asthma symptoms and bronchial reactivity.146–

148 Zinc deficiency may also lead to an enhanced Th2
immune response.149 Oxidant stress may enhance the
inflammatory response of the respiratory tract, so much
attention has been devoted to the relationship between
dietary antioxidants and asthma. While vitamins A, E,
carotene, riboflavin, and pyridoxine have been associated
with reduced lung function and asthma, their role remain
controversial.150–152 The role of vitamin C is more compelling.
Lower vitamin C levels have been associated with a high
prevalence of asthma in adults153 and in children,154 increased
respiratory symptoms,155 reduced pulmonary function,156–158

and increased airways responsiveness.146 Supplementation
with vitamin C has been shown to decrease asthma severity
and frequency,159 exercise induced bronchospasm,160 and
airways responsiveness to methacholine.161

While no specific gene × environment studies of diet in
relation to obesity and asthma have been performed, based on
the above associations one can postulate that the paradigm
illustrated in fig 2 applies to dietary influences as well—that is,
genes in combination with dietary foods which are high in total
fat and low in nutritive value and antioxidants lead to obesity.

Figure 2 Possible mechanisms for gene × environment
interactions in the relationship between obesity and asthma.
(A) Altered physical activity levels may interact with genetics
resulting in obesity which subsequently leads to the development
of asthma. (B) Alternatively, physical activity and genetic
influences may portend to the independent development of asthma
and obesity. Asthma and obesity may then further influence the
expression of each other. Other environmental factors such as diet
may interact with obesity and asthma via similar mechanisms.

Physical activity

Genes

Obesity Asthma

A

Physical activity

Genes

Obesity

Asthma

B
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These may also lead to asthma, either via obesity or by
exerting independent eVects on the asthma phenotype.

One other nutrient should be mentioned—namely,
sodium. BMI and salt load are closely correlated with each
other.162 Blood pressure studies have revealed decreased
levels of atrial natriuretic factor163 164 and increased
aldosterone relative to plasma renin levels164 165 in obesity.
Additionally, adipocytes are known to produce angiotensin
II166 and leptin has direct sympathetic eVects on the renal
outflow tract,167 both of which may lead to the sodium
retention seen in obesity. In asthma, excess sodium has been
associated with increased airways reactivity in a number of
studies,168–171 although other studies did not note this
finding.172–174 Following sodium restriction in three double
blind clinical trials, improvements were noted in airways
responsiveness,175 176 FEV1,

176 177 and asthma symptoms.176 177

Developmental effects
Asthma is primarily a disease of early childhood with 90% of
all cases being diagnosed by the age of 6. There is increasing
evidence that prenatal, neonatal, and early childhood events
aVect the subsequent development of asthma.178–182 The idea
that fetal programming can aVect the subsequent
development of chronic disease was popularised by Barker
and colleagues183–186 and is often referred to as the Barker
hypothesis. This fetal origins hypothesis proposes that these
diseases originate through adaptations which the fetus makes
when it is undernourished. Such diseases may be
consequences of “programming” whereby a stimulus or
insult at a critical sensitive period of early life results in long
term changes in physiology or metabolism.187–189 Maternal
nutrition may play a role in this programming, although this
remains controversial.190 Associations have been noted
between low maternal BMI191 and failure to gain weight

during the first trimester192 and lower birth weight. Similarly,
higher maternal BMI and excessive weight gain tends to
result in infants with a higher birth weight.192–194

Fetal programming and birth weight have been correlated
with the subsequent development of obesity. Studies have
noted that low birth weight is associated with increased
percentage body fat195 and central fat distribution in
children.196 These findings have been confirmed in a recent
analysis of NHANES III data.197 Increased arm fat in small
for gestational age babies has been noted as early as 2–5
months of age when compared with average babies.195 Low
birth weight has also been associated with centripetal obesity
in adolescents198 and adults.199–201 At the other extreme of
birth weight, fetal macrosomia has been associated with the
subsequent accumulation of excess subcutaneous fat in
childhood202 and the development of obesity as adults.203 One
plausible biochemical link between these apparently
disparate associations is leptin. Umbilical cord leptin levels
are increased both in large for gestational age neonates204 205

and in intrauterine growth retarded humans204 and animals.206

Thus, infants exposed to poor nutrition during the early
trimesters may be programmed for enhanced leptin
production and subsequent adipose tissue deposition, while
those overweight infants exposed to high nutrition, especially
late in pregnancy, exemplify increased leptin concentrations
typical of the obese adult.

Low birth weight has also been associated with asthma
risk. Barker et al noted that lower birth weight was associated
with lower lung function and increased risk of death from
obstructive airways disease in adults.207 Since then, consistent
reports of associations between low birth weight and an
increased risk of asthma have appeared.15 208–213 The
mechanism behind this relationship may be a compromised
development of the lungs.207 214 215 Asthma has not been
associated with high birth weights, although asthma216 and
increased IgE levels217–220 have been correlated with large head
circumference at birth.

The prototypical example of the relationship of fetal
development to both asthma and obesity is the Dutch winter
famine of 1944–5. Women exposed during early and mid
pregnancy to the severe nutritional limitations imposed by the
famine had oVspring of reduced birth size.221 222 The risk of
obstructive airways disease was also increased in those exposed
to famine in early and mid gestation, but not in late
gestation.223 Interestingly, in separate follow up studies, the
prevalence of obesity was higher in men exposed to famine
during early to mid gestation and lower in those exposed

Figure 3 In combination with genetic influences, alterations in the
intrauterine nutritive environment can lead to diminished fetal
growth (IUGR) during early gestation or increased birth weight
during late gestation. Both are associated with the subsequent
development of obesity. Fetal programming and the extremes of
birth weights may also lead to asthma.

Obesity

Asthma

IUGR

High
birth weight

Genes

In utero
environment

Learning points
c Obesity has been associated with increases in the incidence and prevalence of asthma

in a number of epidemiological studies of adults and children.
c Weight loss in obese asthmatic subjects results in an improvement in overall pulmonary

function and asthma symptoms, as well as decreases in asthma medication usage.
c Obesity may directly affect the asthma phenotype by mechanical effects including

airways latching, by cytokine modulation via adipose tissue, through common genes or
genetic regions, or by sex specific effects including the hormone oestrogen.

c Obesity may also be related to asthma by genetic interactions with environmental
exposures, including physical activity and diet.

c The Barker hypothesis may underscore the developmental relationship of obesity with
asthma.
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during the last trimester,224 and higher in women exposed early
in gestation.225

Ultimately, all fetal programming phenomena must have
their basis in the altered expression of genes.190 Interactions
of the in utero environment with fetal genes may thus also
contribute to the development of obesity and asthma (fig 3).
Studies investigating this relationship are in progress.

Conclusion
We conclude that there is a significant temporal relationship
between alterations in body mass and asthma. While
probably multifactorial, the potential independent eVects of
biomechanics, inflammation, genetics, and sex specific eVects
belie the closeness of the obese and asthma phenotypes. The
likelihood of additional direct, interactive, or otherwise
related contributions of physical activity, diet, and in utero
development to the relationship between BMI and asthma
further strengthens this notion. That there are so many
theoretical hypotheses underlying this relationship only
enhances the intrigue related to suspected causality.

Supported by NIH 2T32: HL07427–21, The Clinical Epidemiology of Lung
Diseases and by NIH R01: HL66795, Innate Immunity in Heart, Lung, and
Blood Disease.
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